File size: 35,473 Bytes
ddaefda bae67bf 79bb4ee 3ae260c 8e3da9c ae8d22c bae67bf ba8e699 4d3fe36 186320d ddaefda 4078885 4d3fe36 c506221 c59d1e6 bae67bf 16b7f0b 989684f ba8e699 1211b2c 5c4a8ce 91ee28f 8e3da9c 84eaeb7 bae67bf 84eaeb7 bae67bf db69584 0de216a 90cb193 0de216a 5c4a8ce 0de216a 5c4a8ce 0de216a 5c4a8ce 0de216a 5d0028a bae67bf 84eaeb7 0de216a 5c4a8ce 0de216a bae67bf d9fee7e d8305ac 77ef9af d9fee7e 84eaeb7 8c17ac0 d89c20b 5c4a8ce d89c20b 3cc247b d89c20b 8d91d51 3cc247b 91ee28f c2bbdf7 91ee28f c2bbdf7 91ee28f 7a44e1e 5a17a4c ba8e699 91ee28f 5e02bab 91ee28f 09735d0 a5c5672 09735d0 bae67bf 84eaeb7 22197b0 bae67bf 16b7f0b 8e3da9c 90cb193 6740b78 90cb193 0de216a 6740b78 0de216a 6740b78 0de216a 07dcf56 d8305ac 07dcf56 44a7d85 0de216a 6740b78 ea45e87 6740b78 095a61c 6740b78 cf63fc8 01f588e fccd514 09735d0 ba8e699 44a7d85 90cb193 44a7d85 ba8e699 c31239d 22197b0 90cb193 ba8e699 90cb193 6740b78 01f588e 6740b78 01f588e 0727ff4 6740b78 7191bab 6740b78 3ae260c 01f588e 3296e59 0727ff4 54ab1ea 03b936c 0727ff4 03b936c 54ab1ea 0727ff4 03b936c 0727ff4 54ab1ea 03b936c 0727ff4 e9eae75 0727ff4 e9eae75 54ab1ea 01f588e 90cb193 54ab1ea 01f588e 90cb193 2a0d3ff 90cb193 2a0d3ff 90cb193 9157eb3 90cb193 52d6899 90cb193 9157eb3 90cb193 03b936c 90cb193 6740b78 01f588e df482ac 6740b78 3a2edd7 868e37f 90cb193 868e37f df482ac 01f588e df482ac 90cb193 868e37f 6740b78 df482ac 01f588e df482ac 868e37f 6740b78 01f588e 6740b78 3a2edd7 90cb193 01f588e 7008444 90cb193 7008444 01f588e 90cb193 89c7765 90cb193 bad7adc cae704c 90cb193 36bcac8 44a7d85 4e2509e 44a7d85 01f588e 90cb193 01f588e df482ac 01f588e df482ac 01f588e 90cb193 01f588e 4cf5efc 90cb193 01f588e 99a5694 bae67bf 4078885 db69584 ba8e699 22197b0 4078885 22197b0 16b7f0b 4078885 db69584 ba8e699 4078885 ba8e699 22197b0 bad7adc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
import os
import time
import logging
import requests
import json
import concurrent.futures
import threading
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
API_ENDPOINT = "https://api.deepseek.com/user/balance"
TEST_MODEL_ENDPOINT = "https://api.deepseek.com/v1/chat/completions"
MODELS_ENDPOINT = "https://api.deepseek.com/models"
app = Flask(__name__)
text_models = []
invalid_keys_global = []
valid_keys_global = []
executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
model_key_indices = {}
request_timestamps = []
token_counts = []
data_lock = threading.Lock()
def get_credit_summary(api_key):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.get(API_ENDPOINT, headers=headers)
response.raise_for_status()
data = response.json()
if not data.get("is_available", False):
logging.warning(f"API Key: {api_key} is not available.")
return None
balance_infos = data.get("balance_infos", [])
total_balance_cny = 0.0
usd_balance = 0.0
for balance_info in balance_infos:
currency = balance_info.get("currency")
total_balance = float(balance_info.get("total_balance", 0))
if currency == "CNY":
total_balance_cny += total_balance
elif currency == "USD":
usd_balance = total_balance
try:
exchange_rate = get_usd_to_cny_rate()
if exchange_rate is not None:
total_balance_cny += usd_balance * exchange_rate
logging.info(f"获取美元兑人民币汇率成功,API Key:{api_key},当前总额度(CNY): {total_balance_cny}")
else:
logging.warning(f"获取美元兑人民币汇率失败,无法转换美元余额,API Key:{api_key}")
total_balance_cny += usd_balance * 7.2
except Exception as e:
logging.error(f"获取美元兑人民币汇率失败,API Key:{api_key},错误信息:{e}")
total_balance_cny += usd_balance * 7.2
return {"total_balance": float(total_balance_cny)}
except requests.exceptions.RequestException as e:
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
return None
except Exception as e:
logging.error(f"处理额度信息失败,API Key:{api_key},错误信息:{e}")
return None
def get_usd_to_cny_rate():
try:
response = requests.get("https://api.exchangerate-api.com/v4/latest/USD")
response.raise_for_status()
data = response.json()
return data.get("rates", {}).get("CNY")
except requests.exceptions.RequestException as e:
logging.error(f"获取美元兑人民币汇率失败,错误信息:{e}")
return None
def refresh_models():
text_models = ["deepseek-chat", "deepseek-reasoner"]
logging.info(f"所有文本模型列表:{text_models}")
def load_keys():
keys_str = os.environ.get("KEYS")
keys = [key.strip() for key in keys_str.split(',')]
unique_keys = list(set(keys))
keys_str = ','.join(unique_keys)
os.environ["KEYS"] = keys_str
logging.info(f"加载的 keys:{unique_keys}")
with concurrent.futures.ThreadPoolExecutor(
max_workers=10000
) as executor:
future_to_key = {
executor.submit(
process_key, key
): key for key in unique_keys
}
invalid_keys = []
valid_keys = []
for future in concurrent.futures.as_completed(
future_to_key
):
key = future_to_key[future]
try:
key_type = future.result()
if key_type == "invalid":
invalid_keys.append(key)
elif key_type == "valid":
valid_keys.append(key)
except Exception as exc:
logging.error(f"处理 KEY {key} 生成异常: {exc}")
logging.info(f"无效 KEY:{invalid_keys}")
logging.info(f"有效 KEY:{valid_keys}")
global invalid_keys_global, valid_keys_global
invalid_keys_global = invalid_keys
valid_keys_global = valid_keys
def process_key(key):
credit_summary = get_credit_summary(key)
if credit_summary is None:
return "invalid"
else:
total_balance = credit_summary.get("total_balance", 0)
if total_balance <= 0:
return "invalid"
else:
return "valid"
def select_key(model_name):
available_keys = valid_keys_global
current_index = model_key_indices.get(model_name, 0)
for _ in range(len(available_keys)):
key = available_keys[current_index % len(available_keys)]
current_index += 1
model_key_indices[model_name] = current_index
return key
model_key_indices[model_name] = 0
return None
def check_authorization(request):
authorization_key = os.environ.get("AUTHORIZATION_KEY")
if not authorization_key:
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,请设置后重试。")
return False
auth_header = request.headers.get('Authorization')
if not auth_header:
logging.warning("请求头中缺少 Authorization 字段。")
return False
if auth_header != f"Bearer {authorization_key}":
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
return False
return True
scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
@app.route('/')
def index():
current_time = time.time()
one_minute_ago = current_time - 60
with data_lock:
while request_timestamps and request_timestamps[0] < one_minute_ago:
request_timestamps.pop(0)
token_counts.pop(0)
rpm = len(request_timestamps)
tpm = sum(token_counts)
return jsonify({"rpm": rpm, "tpm": tpm})
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
detailed_models = [
{
"id": "deepseek-chat",
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"root": "deepseek-chat",
"parent": None
},
{
"id": "deepseek-reasoner",
"object": "model",
"created": 1678888889,
"owned_by": "openai",
"root": "deepseek-reasoner",
"parent": None
},
{
"id": "deepseek-reasoner-thinking",
"object": "model",
"created": 1678888889,
"owned_by": "openai",
"root": "deepseek-reasoner",
"parent": None
},
{
"id": "deepseek-reasoner-openwebui",
"object": "model",
"created": 1678888889,
"owned_by": "openai",
"root": "deepseek-reasoner",
"parent": None
}
]
return jsonify({
"success": True,
"data": detailed_models
})
def get_billing_info():
keys = valid_keys_global
total_balance = 0
with concurrent.futures.ThreadPoolExecutor(
max_workers=10000
) as executor:
futures = [
executor.submit(get_credit_summary, key) for key in keys
]
for future in concurrent.futures.as_completed(futures):
try:
credit_summary = future.result()
if credit_summary:
total_balance += credit_summary.get(
"total_balance",
0
)
except Exception as exc:
logging.error(f"获取额度信息生成异常: {exc}")
return total_balance
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET'])
def billing_usage():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
end_date = datetime.now()
start_date = end_date - timedelta(days=30)
daily_usage = []
current_date = start_date
while current_date <= end_date:
daily_usage.append({
"timestamp": int(current_date.timestamp()),
"daily_usage": 0
})
current_date += timedelta(days=1)
return jsonify({
"object": "list",
"data": daily_usage,
"total_usage": 0
})
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET'])
def billing_subscription():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
total_balance = get_billing_info()
return jsonify({
"object": "billing_subscription",
"has_payment_method": False,
"canceled": False,
"canceled_at": None,
"delinquent": None,
"access_until": int(datetime(9999, 12, 31).timestamp()),
"soft_limit": 0,
"hard_limit": total_balance,
"system_hard_limit": total_balance,
"soft_limit_usd": 0,
"hard_limit_usd": total_balance,
"system_hard_limit_usd": total_balance,
"plan": {
"name": "SiliconFlow API",
"id": "siliconflow-api"
},
"account_name": "SiliconFlow User",
"po_number": None,
"billing_email": None,
"tax_ids": [],
"billing_address": None,
"business_address": None
})
@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
model_name = data['model']
if model_name == "deepseek-reasoner-thinking" or model_name == "deepseek-reasoner-openwebui":
model_realname = "deepseek-reasoner"
else:
model_realname = model_name
data['model'] = model_realname
api_key = select_key(model_realname)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
start_time = time.time()
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json=data,
stream=data.get("stream", False),
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
if model_name == "deepseek-reasoner":
first_chunk_time = None
full_response_content = ""
for chunk in response.iter_content(chunk_size=2048):
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
yield chunk
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
response_content = ""
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens = response_json[
"usage"
]["completion_tokens"]
if (
"choices" in response_json and
len(response_json["choices"]) > 0 and
"delta" in response_json["choices"][0] and
"content" in response_json[
"choices"
][0]["delta"]
):
response_content += response_json[
"choices"
][0]["delta"]["content"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens+completion_tokens)
request_timestamps_day.append(time.time())
token_counts_day.append(prompt_tokens+completion_tokens)
return Response(
stream_with_context(generate()),
content_type=response.headers['Content-Type']
)
if model_name == "deepseek-reasoner-openwebui":
first_chunk_time = None
full_response_content = ""
reasoning_content_accumulated = ""
content_accumulated = ""
first_reasoning_chunk = True
for chunk in response.iter_lines():
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
for line in chunk.decode("utf-8").splitlines():
if line.startswith("data:"):
try:
chunk_json = json.loads(line.lstrip("data: ").strip())
if "choices" in chunk_json and len(chunk_json["choices"]) > 0:
delta = chunk_json["choices"][0].get("delta", {})
if delta.get("reasoning_content") is not None:
reasoning_chunk = delta["reasoning_content"]
if first_reasoning_chunk:
think_chunk = f"<"
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
think_chunk = f"think"
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
think_chunk = f">\n"
yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n"
first_reasoning_chunk = False
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
if delta.get("content") is not None:
if not first_reasoning_chunk:
reasoning_chunk = f"\n</think>\n"
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
first_reasoning_chunk = True
yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n"
except (KeyError, ValueError, json.JSONDecodeError) as e:
continue
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens += response_json[
"usage"
]["completion_tokens"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") +
" "
)
user_content = user_content.strip()
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated
response_content_replaced = response_content_replaced.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens + completion_tokens)
yield "data: [DONE]\n\n"
return Response(
stream_with_context(generate()),
content_type="text/event-stream"
)
first_chunk_time = None
full_response_content = ""
reasoning_content_accumulated = ""
content_accumulated = ""
first_reasoning_chunk = True
for chunk in response.iter_lines():
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
for line in chunk.decode("utf-8").splitlines():
if line.startswith("data:"):
try:
chunk_json = json.loads(line.lstrip("data: ").strip())
if "choices" in chunk_json and len(chunk_json["choices"]) > 0:
delta = chunk_json["choices"][0].get("delta", {})
if delta.get("reasoning_content") is not None:
reasoning_chunk = delta["reasoning_content"]
reasoning_chunk = reasoning_chunk.replace('\n', '\n> ')
if first_reasoning_chunk:
reasoning_chunk = "> " + reasoning_chunk
first_reasoning_chunk = False
yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n"
if delta.get("content") is not None:
if not first_reasoning_chunk:
yield f"data: {json.dumps({'choices': [{'delta': {'content': '\n\n'}, 'index': 0}]})}\n\n"
first_reasoning_chunk = True
yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n"
except (KeyError, ValueError, json.JSONDecodeError) as e:
# logging.error(f"解析流式响应单行 JSON 失败: {e}, 行内容: {line}")
continue
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens += response_json[
"usage"
]["completion_tokens"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") +
" "
)
user_content = user_content.strip()
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated
response_content_replaced = response_content_replaced.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens + completion_tokens)
yield "data: [DONE]\n\n"
return Response(
stream_with_context(generate()),
content_type="text/event-stream"
)
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
completion_tokens = response_json["usage"]["completion_tokens"]
response_content = ""
if model_name == "deepseek-reasoner-thinking" and "choices" in response_json and len(response_json["choices"]) > 0:
choice = response_json["choices"][0]
if "message" in choice:
if "reasoning_content" in choice["message"]:
reasoning_content = choice["message"]["reasoning_content"]
reasoning_content = reasoning_content.replace('\n', '\n> ')
reasoning_content = '> ' + reasoning_content
formatted_reasoning = f"{reasoning_content}\n"
response_content += formatted_reasoning + "\n"
if "content" in choice["message"]:
response_content += choice["message"]["content"]
elif model_name == "deepseek-reasoner-openwebui" and "choices" in response_json and len(response_json["choices"]) > 0:
choice = response_json["choices"][0]
if "message" in choice:
if "reasoning_content" in choice["message"]:
reasoning_content = choice["message"]["reasoning_content"]
response_content += f"<think>\n{reasoning_content}\n</think>\n"
if "content" in choice["message"]:
response_content += choice["message"]["content"]
elif "choices" in response_json and len(response_json["choices"]) > 0:
response_content = response_json["choices"][0]["message"]["content"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析非流式响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
completion_tokens = 0
response_content = ""
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") +
" "
)
user_content = user_content.strip()
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: 0, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens + completion_tokens)
formatted_response = {
"id": response_json.get("id", ""),
"object": "chat.completion",
"created": response_json.get("created", int(time.time())),
"model": model_name,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
if model_name == "deepseek-reasoner":
formatted_response = response_json
return jsonify(formatted_response)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
logging.info(f"环境变量:{os.environ}")
invalid_keys_global = []
valid_keys_global = []
load_keys()
logging.info("程序启动时首次加载 keys 已执行")
scheduler.start()
logging.info("首次加载 keys 已手动触发执行")
refresh_models()
logging.info("首次刷新模型列表已手动触发执行")
app.run(
debug=False,
host='0.0.0.0',
port=int(os.environ.get('PORT', 7860))
) |