File size: 2,208 Bytes
fb33dd7
 
 
 
 
 
 
 
 
 
 
c3f96f9
fb33dd7
987dcaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb33dd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
title: PythonScriptShowcase
sdk: streamlit
emoji: 🐨
colorFrom: yellow
colorTo: purple
pinned: true
thumbnail: >-
  https://cdn-uploads.huggingface.co/production/uploads/67bda0d043caf793e7275aac/LHgKS_jFqdZcvFfUSt00W.png
short_description: 'Python scripts and Hugging Face datasets '
sdk_version: 1.42.2
---
# Python & HuggingFace Explorer

A Streamlit-based demonstration platform for showcasing Python scripts and Hugging Face datasets with interactive visualization.

## Features

- **Python Code Editor**: Write, edit, and execute Python code with syntax highlighting
- **Dataset Explorer**: Browse and analyze datasets from the HuggingFace Hub
- **Interactive Visualizations**: Create customized charts and graphs from your datasets
- **Model Metrics**: Analyze model performance with detailed metrics and comparisons

## Setup

1. Clone this repository
2. Install dependencies:
   ```
   pip install streamlit pandas matplotlib seaborn plotly scikit-learn datasets transformers
   ```
3. Run the application:
   ```
   streamlit run app.py
   ```

## Usage

### Code Editor

- Write Python code in the editor
- Use provided code templates for common tasks
- Execute code with the "Run Code" button
- View output, including text and visualizations

### Dataset Explorer

- Search for datasets on the HuggingFace Hub
- Browse popular datasets by category
- Examine dataset statistics and preview data
- Perform basic data analysis

### Visualizations

- Create various chart types (bar charts, scatter plots, etc.)
- Customize visualizations with different parameters
- Generate multi-visualization dashboards
- Download visualizations in different formats

### Model Metrics

- Upload model predictions for evaluation
- View classification metrics (confusion matrix, F1 score, etc.)
- Analyze regression metrics (MSE, RMSE, R², etc.)
- Explore example evaluations with simulated data

## Styling

The application uses a custom styling inspired by Hugging Face:
- Colors: Primary #2196F3, Secondary #FFB800, Background #F7F7F7, Text #242424, Accent #19A7CE
- Fonts: Inter for text, Source Code Pro for code

## License

This project is open source and available under the MIT License.