File size: 2,208 Bytes
fb33dd7 c3f96f9 fb33dd7 987dcaf fb33dd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
title: PythonScriptShowcase
sdk: streamlit
emoji: 🐨
colorFrom: yellow
colorTo: purple
pinned: true
thumbnail: >-
https://cdn-uploads.huggingface.co/production/uploads/67bda0d043caf793e7275aac/LHgKS_jFqdZcvFfUSt00W.png
short_description: 'Python scripts and Hugging Face datasets '
sdk_version: 1.42.2
---
# Python & HuggingFace Explorer
A Streamlit-based demonstration platform for showcasing Python scripts and Hugging Face datasets with interactive visualization.
## Features
- **Python Code Editor**: Write, edit, and execute Python code with syntax highlighting
- **Dataset Explorer**: Browse and analyze datasets from the HuggingFace Hub
- **Interactive Visualizations**: Create customized charts and graphs from your datasets
- **Model Metrics**: Analyze model performance with detailed metrics and comparisons
## Setup
1. Clone this repository
2. Install dependencies:
```
pip install streamlit pandas matplotlib seaborn plotly scikit-learn datasets transformers
```
3. Run the application:
```
streamlit run app.py
```
## Usage
### Code Editor
- Write Python code in the editor
- Use provided code templates for common tasks
- Execute code with the "Run Code" button
- View output, including text and visualizations
### Dataset Explorer
- Search for datasets on the HuggingFace Hub
- Browse popular datasets by category
- Examine dataset statistics and preview data
- Perform basic data analysis
### Visualizations
- Create various chart types (bar charts, scatter plots, etc.)
- Customize visualizations with different parameters
- Generate multi-visualization dashboards
- Download visualizations in different formats
### Model Metrics
- Upload model predictions for evaluation
- View classification metrics (confusion matrix, F1 score, etc.)
- Analyze regression metrics (MSE, RMSE, R², etc.)
- Explore example evaluations with simulated data
## Styling
The application uses a custom styling inspired by Hugging Face:
- Colors: Primary #2196F3, Secondary #FFB800, Background #F7F7F7, Text #242424, Accent #19A7CE
- Fonts: Inter for text, Source Code Pro for code
## License
This project is open source and available under the MIT License. |