DevToolKit / agent.py
whackthejacker's picture
Update agent.py
4b1134a verified
raw
history blame
8.81 kB
import os
import random
import logging
import gradio as gr
import asyncio
from typing import List, Tuple, Generator, Any
from inference_client import InferenceClient # Adjust the import as needed
# Set up logging to capture errors and warnings.
logging.basicConfig(
level=logging.INFO,
filename='chatbot.log',
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Encapsulated configuration to avoid global variable pitfalls.
class ChatbotConfig:
def __init__(
self,
max_history: int = 100,
verbose: bool = True,
max_iterations: int = 1000,
max_new_tokens: int = 256,
default_seed: int = None
):
self.max_history = max_history
self.verbose = verbose
self.max_iterations = max_iterations
self.max_new_tokens = max_new_tokens
self.default_seed = default_seed or random.randint(1, 2**32 - 1)
# Global configuration instance.
config = ChatbotConfig()
# Externalize prompts into a dictionary, optionally overridden by environment variables.
PROMPTS = {
"ACTION_PROMPT": os.environ.get("ACTION_PROMPT", "action prompt"),
"ADD_PROMPT": os.environ.get("ADD_PROMPT", "add prompt"),
"COMPRESS_HISTORY_PROMPT": os.environ.get("COMPRESS_HISTORY_PROMPT", "compress history prompt"),
"LOG_PROMPT": os.environ.get("LOG_PROMPT", "log prompt"),
"LOG_RESPONSE": os.environ.get("LOG_RESPONSE", "log response"),
"MODIFY_PROMPT": os.environ.get("MODIFY_PROMPT", "modify prompt"),
"PREFIX": os.environ.get("PREFIX", "prefix"),
"SEARCH_QUERY": os.environ.get("SEARCH_QUERY", "search query"),
"READ_PROMPT": os.environ.get("READ_PROMPT", "read prompt"),
"TASK_PROMPT": os.environ.get("TASK_PROMPT", "task prompt"),
"UNDERSTAND_TEST_RESULTS_PROMPT": os.environ.get("UNDERSTAND_TEST_RESULTS_PROMPT", "understand test results prompt")
}
# Instantiate the AI client.
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt_var(message: str, history: List[str]) -> str:
"""
Format the provided message and conversation history into the required prompt format.
Args:
message (str): The current instruction/message.
history (List[str]): List of previous conversation entries.
Returns:
str: A formatted prompt string.
Raises:
TypeError: If message is not a string or any history entry is not a string.
"""
if not isinstance(message, str):
raise TypeError("The instruction message must be a string.")
if not all(isinstance(item, str) for item in history):
raise TypeError("All items in history must be strings.")
history_text = "\n".join(history) if history else "No previous conversation."
prompt = f"\n### Instruction:\n{message}\n### History:\n{history_text}"
return prompt
def run_agent(instruction: str, history: List[str]) -> Tuple[str, List[str]]:
"""
Run the AI agent with the given instruction and conversation history.
Args:
instruction (str): The user instruction.
history (List[str]): The conversation history.
Returns:
Tuple[str, List[str]]: A tuple containing the full AI response and a list of extracted actions.
Raises:
TypeError: If inputs are of invalid type.
"""
if not isinstance(instruction, str):
raise TypeError("Instruction must be a string.")
if not isinstance(history, list) or not all(isinstance(item, str) for item in history):
raise TypeError("History must be a list of strings.")
prompt = format_prompt_var(instruction, history)
response = ""
iterations = 0
try:
for chunk in generate(prompt, history[-config.max_history:], temperature=0.7):
response += chunk
iterations += 1
if "\n\n### Instruction:" in chunk or iterations >= config.max_iterations:
break
except Exception as e:
logging.error("Error in run_agent: %s", e)
response += f"\n[Error in run_agent: {e}]"
# Extract actions from the response.
response_actions = []
for line in response.strip().split("\n"):
if line.startswith("action:"):
response_actions.append(line.replace("action: ", ""))
return response, response_actions
def generate(prompt: str, history: List[str], temperature: float) -> Generator[str, None, None]:
"""
Generate text from the AI model using the formatted prompt.
Args:
prompt (str): The input prompt.
history (List[str]): Recent conversation history.
temperature (float): Sampling temperature.
Yields:
str: Incremental output from the text-generation stream.
"""
seed = random.randint(1, 2**32 - 1) if config.default_seed is None else config.default_seed
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": config.max_new_tokens,
"top_p": 0.95,
"repetition_penalty": 1.0,
"do_sample": True,
"seed": seed,
}
formatted_prompt = format_prompt_var(prompt, history)
try:
stream = client.text_generation(
formatted_prompt,
**generate_kwargs,
stream=True,
details=True,
return_full_text=False
)
except Exception as e:
logging.error("Error during text_generation call: %s", e)
yield f"[Error during text_generation call: {e}]"
return
output = ""
iterations = 0
for response in stream:
iterations += 1
try:
output += response.token.text
except AttributeError as ae:
logging.error("Malformed response token: %s", ae)
yield f"[Malformed response token: {ae}]"
break
yield output
if iterations >= config.max_iterations:
yield "\n[Response truncated due to length limitations]"
break
async def async_run_agent(instruction: str, history: List[str]) -> Tuple[str, List[str]]:
"""
Asynchronous wrapper to run the agent in a separate thread.
Args:
instruction (str): The instruction for the AI.
history (List[str]): The conversation history.
Returns:
Tuple[str, List[str]]: The response and extracted actions.
"""
return await asyncio.to_thread(run_agent, instruction, history)
def clear_conversation() -> List[str]:
"""
Clear the conversation history.
Returns:
List[str]: An empty conversation history.
"""
return []
def update_chatbot_styles(history: List[Any]) -> Any:
"""
Update the chatbot display styles based on the number of messages.
Args:
history (List[Any]): The current conversation history.
Returns:
Update object for Gradio Chatbot.
"""
num_messages = sum(1 for item in history if isinstance(item, tuple))
return gr.Chatbot.update({"num_messages": num_messages})
def update_max_history(value: int) -> int:
"""
Update the max_history in configuration.
Args:
value (int): New maximum history value.
Returns:
int: The updated max_history.
"""
config.max_history = int(value)
return config.max_history
def create_interface() -> gr.Blocks:
"""
Create and return the Gradio interface for the chatbot application.
Returns:
gr.Blocks: The Gradio Blocks object representing the UI.
"""
block = gr.Blocks()
chatbot = gr.Chatbot()
with block:
gr.Markdown("## Expert Web Developer Assistant")
with gr.Tab("Conversation"):
txt = gr.Textbox(show_label=False, placeholder="Type something...")
btn = gr.Button("Send", variant="primary")
# When text is submitted, run the agent asynchronously.
txt.submit(
async_run_agent,
inputs=[txt, chatbot],
outputs=[chatbot, None]
)
# Clear conversation history and update chatbot UI.
txt.clear(fn=clear_conversation, outputs=chatbot).then(
update_chatbot_styles, chatbot, chatbot
)
btn.click(fn=clear_conversation, outputs=chatbot).then(
update_chatbot_styles, chatbot, chatbot
)
with gr.Tab("Settings"):
max_history_slider = gr.Slider(
minimum=1, maximum=100, step=1,
label="Max history",
value=config.max_history
)
max_history_slider.change(
update_max_history, max_history_slider, max_history_slider
)
return block
if __name__ == "__main__":
interface = create_interface()
interface.launch()