File size: 4,260 Bytes
b20c0ea
0ef105d
b20c0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17fee2b
b20c0ea
 
 
8b5dff8
ef66abf
b20c0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1dc596
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io


import base64, os
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image

from huggingface_hub import snapshot_download

# Define repository and local directory
repo_id = "microsoft/OmniParser-v2.0"  # HF repo
local_dir = "weights"  # Target local directory

# Download the entire repository
snapshot_download(repo_id=repo_id, local_dir=local_dir)

print(f"Repository downloaded to: {local_dir}")


yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")

MARKDOWN = """"""

DEVICE = torch.device('cuda')

@spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
    image_input,
    box_threshold,
    iou_threshold,
    use_paddleocr,
    imgsz
) -> Optional[Image.Image]:

    # image_save_path = 'imgs/saved_image_demo.png'
    # image_input.save(image_save_path)
    # image = Image.open(image_save_path)
    box_overlay_ratio = image_input.size[0] / 3200
    draw_bbox_config = {
        'text_scale': 0.8 * box_overlay_ratio,
        'text_thickness': max(int(2 * box_overlay_ratio), 1),
        'text_padding': max(int(3 * box_overlay_ratio), 1),
        'thickness': max(int(3 * box_overlay_ratio), 1),
    }
    # import pdb; pdb.set_trace()

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
    text, ocr_bbox = ocr_bbox_rslt
    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)  
    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print('finish processing')
    parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
    # parsed_content_list = str(parsed_content_list)
    return image, str(parsed_content_list)

with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(
                type='pil', label='Upload image')
            # set the threshold for removing the bounding boxes with low confidence, default is 0.05
            box_threshold_component = gr.Slider(
                label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
            # set the threshold for removing the bounding boxes with large overlap, default is 0.1
            iou_threshold_component = gr.Slider(
                label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
            use_paddleocr_component = gr.Checkbox(
                label='Use PaddleOCR', value=True)
            imgsz_component = gr.Slider(
                label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
            submit_button_component = gr.Button(
                value='Submit', variant='primary')
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image Output')
            text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')

    submit_button_component.click(
        fn=process,
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component,
            use_paddleocr_component,
            imgsz_component
        ],
        outputs=[image_output_component, text_output_component]
    )

# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)