# modules/numbering_system/addition_bases.py title = "Addition in Various Bases" description = "This module covers addition operations in bases like binary, octal, and hexadecimal." def generate_question(): import random # Choose a base and corresponding valid digits base = random.choice([2, 8, 16]) digits = '01' if base == 2 else '01234567' if base == 8 else '0123456789ABCDEF' # Generate two valid numbers for the selected base num1 = ''.join(random.choice(digits) for _ in range(3)) num2 = ''.join(random.choice(digits) for _ in range(3)) def add_numbers(num1, num2, base): # Perform the addition in the correct base return hex(int(num1, base) + int(num2, base))[2:].upper() if base == 16 else \ oct(int(num1, base) + int(num2, base))[2:] if base == 8 else \ bin(int(num1, base) + int(num2, base))[2:] if base == 2 else \ str(int(num1) + int(num2)) correct_answer = add_numbers(num1, num2, base) options = [correct_answer] # Generate incorrect answers while len(options) < 4: invalid_answer = ''.join(random.choice(digits) for _ in range(4)) if invalid_answer != correct_answer: options.append(invalid_answer) random.shuffle(options) question = f"Add the numbers {num1} and {num2} in base {base}." explanation = f"The sum of {num1} and {num2} in base {base} is {correct_answer}." step_by_step_solution = [ f"Step 1: Convert the numbers {num1} and {num2} to base 10.", "Step 2: Add the numbers in base 10.", f"Step 3: Convert the sum back to base {base}." ] return { "question": question, "options": options, "correct_answer": correct_answer, "explanation": explanation, "step_by_step_solution": step_by_step_solution }