math / modules /counting /addition_bases.py
Sina Media Lab
Updates
eda4dad
raw
history blame
1.88 kB
# modules/numbering_system/addition_bases.py
title = "Addition in Various Bases"
description = "This module covers addition operations in bases like binary, octal, and hexadecimal."
def generate_question():
import random
# Choose a base and corresponding valid digits
base = random.choice([2, 8, 16])
digits = '01' if base == 2 else '01234567' if base == 8 else '0123456789ABCDEF'
# Generate two valid numbers for the selected base
num1 = ''.join(random.choice(digits) for _ in range(3))
num2 = ''.join(random.choice(digits) for _ in range(3))
def add_numbers(num1, num2, base):
# Perform the addition in the correct base
return hex(int(num1, base) + int(num2, base))[2:].upper() if base == 16 else \
oct(int(num1, base) + int(num2, base))[2:] if base == 8 else \
bin(int(num1, base) + int(num2, base))[2:] if base == 2 else \
str(int(num1) + int(num2))
correct_answer = add_numbers(num1, num2, base)
options = [correct_answer]
# Generate incorrect answers
while len(options) < 4:
invalid_answer = ''.join(random.choice(digits) for _ in range(4))
if invalid_answer != correct_answer:
options.append(invalid_answer)
random.shuffle(options)
question = f"Add the numbers {num1} and {num2} in base {base}."
explanation = f"The sum of {num1} and {num2} in base {base} is {correct_answer}."
step_by_step_solution = [
f"Step 1: Convert the numbers {num1} and {num2} to base 10.",
"Step 2: Add the numbers in base 10.",
f"Step 3: Convert the sum back to base {base}."
]
return {
"question": question,
"options": options,
"correct_answer": correct_answer,
"explanation": explanation,
"step_by_step_solution": step_by_step_solution
}