tangtang1995 commited on
Commit
e79105b
·
verified ·
1 Parent(s): 8f46cc9
README.md CHANGED
@@ -1,20 +1,29 @@
1
  ---
2
- title: Humanlike
3
  emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: true
9
- license: cc-by-nd-4.0
 
 
10
  ---
11
 
12
- # Start the configuration
13
 
14
- Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
 
 
 
15
 
16
- Results files should have the following format and be stored as json files:
17
- ```json
 
 
 
 
18
  {
19
  "config": {
20
  "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
@@ -32,13 +41,4 @@ Results files should have the following format and be stored as json files:
32
  }
33
  ```
34
 
35
- Request files are created automatically by this tool.
36
-
37
- If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
38
-
39
- # Code logic for more complex edits
40
-
41
- You'll find
42
- - the main table' columns names and properties in `src/display/utils.py`
43
- - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
44
- - teh logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
1
  ---
2
+ title: HHEM Leaderboard
3
  emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 4.37.1
8
  app_file: app.py
9
  pinned: true
10
+ license: apache-2.0
11
+ tags:
12
+ - leaderboard
13
  ---
14
 
 
15
 
16
+ python>3.10
17
+ pip spacy
18
+ python -m spacy download en_core_web_sm
19
+ pip install google.generativeai
20
 
21
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
22
+
23
+ Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
24
+
25
+ Results files should have the following format:
26
+ ```
27
  {
28
  "config": {
29
  "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
 
41
  }
42
  ```
43
 
44
+ Request files are created automatically by this tool.
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,110 +1,234 @@
1
  import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
  from apscheduler.schedulers.background import BackgroundScheduler
5
  from huggingface_hub import snapshot_download
6
 
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
  from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
 
31
 
32
  def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
 
35
- ### Space initialisation
36
  try:
37
- print(EVAL_REQUESTS_PATH)
38
  snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
  )
41
  except Exception:
42
  restart_space()
43
  try:
44
- print(EVAL_RESULTS_PATH)
45
  snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
  )
48
  except Exception:
49
  restart_space()
50
 
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
 
54
  (
55
  finished_eval_queue_df,
56
  running_eval_queue_df,
57
  pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
 
92
  demo = gr.Blocks(css=custom_css)
93
  with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
 
104
  with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
  with gr.Column():
106
  with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
 
109
  with gr.Column():
110
  with gr.Accordion(
@@ -114,8 +238,8 @@ with demo:
114
  with gr.Row():
115
  finished_eval_table = gr.components.Dataframe(
116
  value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
  row_count=5,
120
  )
121
  with gr.Accordion(
@@ -125,8 +249,8 @@ with demo:
125
  with gr.Row():
126
  running_eval_table = gr.components.Dataframe(
127
  value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
  row_count=5,
131
  )
132
 
@@ -137,8 +261,8 @@ with demo:
137
  with gr.Row():
138
  pending_eval_table = gr.components.Dataframe(
139
  value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
  row_count=5,
143
  )
144
  with gr.Row():
@@ -149,7 +273,7 @@ with demo:
149
  model_name_textbox = gr.Textbox(label="Model name")
150
  revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
  model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
  label="Model type",
154
  multiselect=False,
155
  value=None,
@@ -158,14 +282,14 @@ with demo:
158
 
159
  with gr.Column():
160
  precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
  label="Precision",
163
  multiselect=False,
164
  value="float16",
165
  interactive=True,
166
  )
167
  weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
  label="Weights type",
170
  multiselect=False,
171
  value="Original",
@@ -176,7 +300,7 @@ with demo:
176
  submit_button = gr.Button("Submit Eval")
177
  submission_result = gr.Markdown()
178
  submit_button.click(
179
- add_new_eval,
180
  [
181
  model_name_textbox,
182
  base_model_name_textbox,
@@ -191,8 +315,8 @@ with demo:
191
  with gr.Row():
192
  with gr.Accordion("📙 Citation", open=False):
193
  citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
  lines=20,
197
  elem_id="citation-button",
198
  show_copy_button=True,
@@ -201,4 +325,4 @@ with demo:
201
  scheduler = BackgroundScheduler()
202
  scheduler.add_job(restart_space, "interval", seconds=1800)
203
  scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
  import gradio as gr
 
2
  import pandas as pd
3
  from apscheduler.schedulers.background import BackgroundScheduler
4
  from huggingface_hub import snapshot_download
5
 
6
+ import src.display.about as about
 
 
 
 
 
 
 
7
  from src.display.css_html_js import custom_css
8
+ import src.display.utils as utils
9
+ import src.envs as envs
10
+ import src.populate as populate
11
+ import src.submission.submit as submit
 
 
 
 
 
 
 
 
 
 
12
 
13
 
14
  def restart_space():
15
+ envs.API.restart_space(repo_id=envs.REPO_ID, token=envs.TOKEN)
16
 
 
17
  try:
18
+ print(envs.EVAL_REQUESTS_PATH)
19
  snapshot_download(
20
+ repo_id=envs.QUEUE_REPO, local_dir=envs.EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
21
  )
22
  except Exception:
23
  restart_space()
24
  try:
25
+ print(envs.EVAL_RESULTS_PATH)
26
  snapshot_download(
27
+ repo_id=envs.RESULTS_REPO, local_dir=envs.EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
28
  )
29
  except Exception:
30
  restart_space()
31
 
32
+ raw_data, original_df = populate.get_leaderboard_df(envs.EVAL_RESULTS_PATH, envs.EVAL_REQUESTS_PATH, utils.COLS, utils.BENCHMARK_COLS)
33
+ leaderboard_df = original_df.copy()
34
 
35
  (
36
  finished_eval_queue_df,
37
  running_eval_queue_df,
38
  pending_eval_queue_df,
39
+ ) = populate.get_evaluation_queue_df(envs.EVAL_REQUESTS_PATH, utils.EVAL_COLS)
40
+
41
+
42
+ # Searching and filtering
43
+ def update_table(
44
+ hidden_df: pd.DataFrame,
45
+ columns: list,
46
+ type_query: list,
47
+ precision_query: str,
48
+ size_query: list,
49
+ show_deleted: bool,
50
+ query: str,
51
+ ):
52
+ filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
53
+ filtered_df = filter_queries(query, filtered_df)
54
+ df = select_columns(filtered_df, columns)
55
+ return df
56
+
57
+
58
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
59
+ return df[(df[utils.AutoEvalColumn.dummy.name].str.contains(query, case=False))]
60
+
61
+
62
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
63
+ always_here_cols = [
64
+ utils.AutoEvalColumn.model_type_symbol.name,
65
+ utils.AutoEvalColumn.model.name,
66
+ ]
67
+ # We use COLS to maintain sorting
68
+ filtered_df = df[
69
+ always_here_cols + [c for c in utils.COLS if c in df.columns and c in columns] + [utils.AutoEvalColumn.dummy.name]
70
+ ]
71
+ return filtered_df
72
+
73
+
74
+ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
75
+ final_df = []
76
+ if query != "":
77
+ queries = [q.strip() for q in query.split(";")]
78
+ for _q in queries:
79
+ _q = _q.strip()
80
+ if _q != "":
81
+ temp_filtered_df = search_table(filtered_df, _q)
82
+ if len(temp_filtered_df) > 0:
83
+ final_df.append(temp_filtered_df)
84
+ if len(final_df) > 0:
85
+ filtered_df = pd.concat(final_df)
86
+ filtered_df = filtered_df.drop_duplicates(
87
+ subset=[utils.AutoEvalColumn.model.name, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name]
88
+ )
89
+
90
+ return filtered_df
91
+
92
+
93
+ def filter_models(
94
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
95
+ ) -> pd.DataFrame:
96
+ # Show all models
97
+ # if show_deleted:
98
+ # filtered_df = df
99
+ # else: # Show only still on the hub models
100
+ # filtered_df = df[df[utils.AutoEvalColumn.still_on_hub.name]]
101
+
102
+ filtered_df = df
103
+
104
+ type_emoji = [t[0] for t in type_query]
105
+ filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
106
+ filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
107
+
108
+ numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
109
+ params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
110
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
111
+ filtered_df = filtered_df.loc[mask]
112
+
113
+ return filtered_df
114
 
115
 
116
  demo = gr.Blocks(css=custom_css)
117
  with demo:
118
+ gr.HTML(about.TITLE)
119
+ gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text")
120
 
121
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
122
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
123
+ with gr.Row():
124
+ with gr.Column():
125
+ with gr.Row():
126
+ search_bar = gr.Textbox(
127
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
128
+ show_label=False,
129
+ elem_id="search-bar",
130
+ )
131
+ with gr.Row():
132
+ shown_columns = gr.CheckboxGroup(
133
+ choices=[
134
+ c.name
135
+ for c in utils.fields(utils.AutoEvalColumn)
136
+ if not c.hidden and not c.never_hidden and not c.dummy
137
+ ],
138
+ value=[
139
+ c.name
140
+ for c in utils.fields(utils.AutoEvalColumn)
141
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
142
+ ],
143
+ label="Select columns to show",
144
+ elem_id="column-select",
145
+ interactive=True,
146
+ )
147
+ with gr.Row():
148
+ deleted_models_visibility = gr.Checkbox(
149
+ value=False, label="Show gated/private/deleted models", interactive=True
150
+ )
151
+ with gr.Column(min_width=320):
152
+ #with gr.Box(elem_id="box-filter"):
153
+ filter_columns_type = gr.CheckboxGroup(
154
+ label="Model types",
155
+ choices=[t.to_str() for t in utils.ModelType],
156
+ value=[t.to_str() for t in utils.ModelType],
157
+ interactive=True,
158
+ elem_id="filter-columns-type",
159
+ )
160
+ filter_columns_precision = gr.CheckboxGroup(
161
+ label="Precision",
162
+ choices=[i.value.name for i in utils.Precision],
163
+ value=[i.value.name for i in utils.Precision],
164
+ interactive=True,
165
+ elem_id="filter-columns-precision",
166
+ )
167
+ filter_columns_size = gr.CheckboxGroup(
168
+ label="Model sizes (in billions of parameters)",
169
+ choices=list(utils.NUMERIC_INTERVALS.keys()),
170
+ value=list(utils.NUMERIC_INTERVALS.keys()),
171
+ interactive=True,
172
+ elem_id="filter-columns-size",
173
+ )
174
+
175
+ leaderboard_table = gr.components.Dataframe(
176
+ value=leaderboard_df[
177
+ [c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden]
178
+ + shown_columns.value
179
+ + [utils.AutoEvalColumn.dummy.name]
180
+ ],
181
+ headers=[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden] + shown_columns.value,
182
+ datatype=utils.TYPES,
183
+ elem_id="leaderboard-table",
184
+ interactive=False,
185
+ visible=True,
186
+ column_widths=["2%", "33%"]
187
+ )
188
+
189
+ # Dummy leaderboard for handling the case when the user uses backspace key
190
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
191
+ value=original_df[utils.COLS],
192
+ headers=utils.COLS,
193
+ datatype=utils.TYPES,
194
+ visible=False,
195
+ )
196
+ search_bar.submit(
197
+ update_table,
198
+ [
199
+ hidden_leaderboard_table_for_search,
200
+ shown_columns,
201
+ filter_columns_type,
202
+ filter_columns_precision,
203
+ filter_columns_size,
204
+ deleted_models_visibility,
205
+ search_bar,
206
+ ],
207
+ leaderboard_table,
208
+ )
209
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
210
+ selector.change(
211
+ update_table,
212
+ [
213
+ hidden_leaderboard_table_for_search,
214
+ shown_columns,
215
+ filter_columns_type,
216
+ filter_columns_precision,
217
+ filter_columns_size,
218
+ deleted_models_visibility,
219
+ search_bar,
220
+ ],
221
+ leaderboard_table,
222
+ queue=True,
223
+ )
224
 
225
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
226
+ gr.Markdown(about.LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
227
 
228
  with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
229
  with gr.Column():
230
  with gr.Row():
231
+ gr.Markdown(about.EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
232
 
233
  with gr.Column():
234
  with gr.Accordion(
 
238
  with gr.Row():
239
  finished_eval_table = gr.components.Dataframe(
240
  value=finished_eval_queue_df,
241
+ headers=utils.EVAL_COLS,
242
+ datatype=utils.EVAL_TYPES,
243
  row_count=5,
244
  )
245
  with gr.Accordion(
 
249
  with gr.Row():
250
  running_eval_table = gr.components.Dataframe(
251
  value=running_eval_queue_df,
252
+ headers=utils.EVAL_COLS,
253
+ datatype=utils.EVAL_TYPES,
254
  row_count=5,
255
  )
256
 
 
261
  with gr.Row():
262
  pending_eval_table = gr.components.Dataframe(
263
  value=pending_eval_queue_df,
264
+ headers=utils.EVAL_COLS,
265
+ datatype=utils.EVAL_TYPES,
266
  row_count=5,
267
  )
268
  with gr.Row():
 
273
  model_name_textbox = gr.Textbox(label="Model name")
274
  revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
275
  model_type = gr.Dropdown(
276
+ choices=[t.to_str(" : ") for t in utils.ModelType if t != utils.ModelType.Unknown],
277
  label="Model type",
278
  multiselect=False,
279
  value=None,
 
282
 
283
  with gr.Column():
284
  precision = gr.Dropdown(
285
+ choices=[i.value.name for i in utils.Precision if i != utils.Precision.Unknown],
286
  label="Precision",
287
  multiselect=False,
288
  value="float16",
289
  interactive=True,
290
  )
291
  weight_type = gr.Dropdown(
292
+ choices=[i.value.name for i in utils.WeightType],
293
  label="Weights type",
294
  multiselect=False,
295
  value="Original",
 
300
  submit_button = gr.Button("Submit Eval")
301
  submission_result = gr.Markdown()
302
  submit_button.click(
303
+ submit.add_new_eval,
304
  [
305
  model_name_textbox,
306
  base_model_name_textbox,
 
315
  with gr.Row():
316
  with gr.Accordion("📙 Citation", open=False):
317
  citation_button = gr.Textbox(
318
+ value=about.CITATION_BUTTON_TEXT,
319
+ label=about.CITATION_BUTTON_LABEL,
320
  lines=20,
321
  elem_id="citation-button",
322
  show_copy_button=True,
 
325
  scheduler = BackgroundScheduler()
326
  scheduler.add_job(restart_space, "interval", seconds=1800)
327
  scheduler.start()
328
+ demo.queue(default_concurrency_limit=40).launch()
main_backend.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import pprint
4
+ import os
5
+
6
+ from huggingface_hub import snapshot_download
7
+
8
+ import src.backend.run_eval_suite as run_eval_suite
9
+ import src.backend.manage_requests as manage_requests
10
+ import src.backend.sort_queue as sort_queue
11
+ import src.envs as envs
12
+
13
+ os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
14
+
15
+ logging.basicConfig(level=logging.ERROR)
16
+ pp = pprint.PrettyPrinter(width=80)
17
+
18
+ PENDING_STATUS = "PENDING"
19
+ RUNNING_STATUS = "RUNNING"
20
+ FINISHED_STATUS = "FINISHED"
21
+ FAILED_STATUS = "FAILED"
22
+ # import os
23
+ # os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
24
+ # snapshot_download(repo_id=envs.RESULTS_REPO, revision="main",
25
+ # local_dir=envs.EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
26
+
27
+ # snapshot_download(repo_id=envs.QUEUE_REPO, revision="main",
28
+ # local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
29
+ # exit()
30
+
31
+ def run_auto_eval(args):
32
+ if not args.reproduce:
33
+ current_pending_status = [PENDING_STATUS]
34
+ print('_________________')
35
+ manage_requests.check_completed_evals(
36
+ api=envs.API,
37
+ checked_status=RUNNING_STATUS,
38
+ completed_status=FINISHED_STATUS,
39
+ failed_status=FAILED_STATUS,
40
+ hf_repo=envs.QUEUE_REPO,
41
+ local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
42
+ hf_repo_results=envs.RESULTS_REPO,
43
+ local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
44
+ )
45
+ logging.info("Checked completed evals")
46
+ eval_requests = manage_requests.get_eval_requests(job_status=current_pending_status,
47
+ hf_repo=envs.QUEUE_REPO,
48
+ local_dir=envs.EVAL_REQUESTS_PATH_BACKEND)
49
+ logging.info("Got eval requests")
50
+ eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
51
+ logging.info("Sorted eval requests")
52
+
53
+ print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
54
+ print(eval_requests)
55
+ if len(eval_requests) == 0:
56
+ print("No eval requests found. Exiting.")
57
+ return
58
+
59
+ if args.model is not None:
60
+ eval_request = manage_requests.EvalRequest(
61
+ model=args.model,
62
+ status=PENDING_STATUS,
63
+ precision=args.precision
64
+ )
65
+ pp.pprint(eval_request)
66
+ else:
67
+ eval_request = eval_requests[0]
68
+ pp.pprint(eval_request)
69
+
70
+ # manage_requests.set_eval_request(
71
+ # api=envs.API,
72
+ # eval_request=eval_request,
73
+ # new_status=RUNNING_STATUS,
74
+ # hf_repo=envs.QUEUE_REPO,
75
+ # local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
76
+ # )
77
+ # logging.info("Set eval request to running, now running eval")
78
+
79
+ run_eval_suite.run_evaluation(
80
+ eval_request=eval_request,
81
+ local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
82
+ results_repo=envs.RESULTS_REPO,
83
+ batch_size=1,
84
+ device=envs.DEVICE,
85
+ no_cache=True,
86
+ need_check=not args.publish,
87
+ write_results=args.update
88
+ )
89
+ logging.info("Eval finished, now setting status to finished")
90
+ else:
91
+ eval_request = manage_requests.EvalRequest(
92
+ model=args.model,
93
+ status=PENDING_STATUS,
94
+ precision=args.precision
95
+ )
96
+ pp.pprint(eval_request)
97
+ logging.info("Running reproducibility eval")
98
+
99
+ run_eval_suite.run_evaluation(
100
+ eval_request=eval_request,
101
+ local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
102
+ results_repo=envs.RESULTS_REPO,
103
+ batch_size=1,
104
+ device=envs.DEVICE,
105
+ need_check=not args.publish,
106
+ write_results=args.update
107
+ )
108
+ logging.info("Reproducibility eval finished")
109
+
110
+
111
+ def main():
112
+ parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
113
+
114
+ # Optional arguments
115
+ parser.add_argument("--reproduce", type=bool, default=True, help="Reproduce the evaluation results")
116
+ parser.add_argument("--model", type=str, default=None, help="Your Model ID")
117
+ parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
118
+ parser.add_argument("--publish", type=bool, default=False, help="whether directly publish the evaluation results on HF")
119
+ parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")
120
+
121
+ args = parser.parse_args()
122
+
123
+ run_auto_eval(args)
124
+
125
+
126
+ if __name__ == "__main__":
127
+ main()
requirements.txt CHANGED
@@ -1,16 +1,17 @@
1
- APScheduler
2
- black
3
- datasets
4
- gradio
5
- gradio[oauth]
6
- gradio_leaderboard==0.0.9
7
- gradio_client
8
  huggingface-hub>=0.18.0
9
- matplotlib
10
- numpy
11
- pandas
12
- python-dateutil
13
- tqdm
14
- transformers
 
 
15
  tokenizers>=0.15.0
16
- sentencepiece
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.4.0
6
+ gradio_client==0.7.0
 
7
  huggingface-hub>=0.18.0
8
+ litellm==1.15.1
9
+ matplotlib==3.7.1
10
+ numpy==1.24.2
11
+ pandas==2.0.0
12
+ python-dateutil==2.8.2
13
+ requests==2.28.2
14
+ tqdm==4.65.0
15
+ transformers==4.35.2
16
  tokenizers>=0.15.0
17
+ sentence-transformers==2.2.2
scripts/create_request_file.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ import re
5
+ from datetime import datetime, timezone
6
+
7
+ import click
8
+ from colorama import Fore
9
+ from huggingface_hub import HfApi, snapshot_download
10
+
11
+ from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH
12
+
13
+
14
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
15
+ model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
16
+ weight_types = ("Original", "Delta", "Adapter")
17
+
18
+
19
+ def get_model_size(model_info, precision: str):
20
+ size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
21
+ try:
22
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
23
+ except (AttributeError, TypeError):
24
+ try:
25
+ size_match = re.search(size_pattern, model_info.modelId.lower())
26
+ model_size = size_match.group(0)
27
+ model_size = round(float(model_size[:-1]) if model_size[-1] == "b"
28
+ else float(model_size[:-1]) / 1e3, 3)
29
+ except AttributeError:
30
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
31
+
32
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
33
+ model_size = size_factor * model_size
34
+ return model_size
35
+
36
+
37
+ def main():
38
+ api = HfApi()
39
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
40
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH,
41
+ repo_type="dataset")
42
+
43
+ model_name = click.prompt("Enter model name")
44
+ revision = click.prompt("Enter revision", default="main")
45
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
46
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
47
+ weight_type = click.prompt("Enter weight type", default="Original",
48
+ type=click.Choice(weight_types))
49
+ base_model = click.prompt("Enter base model", default="")
50
+ status = click.prompt("Enter status", default="FINISHED")
51
+
52
+ try:
53
+ model_info = api.model_info(repo_id=model_name, revision=revision)
54
+ except Exception as e:
55
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
56
+ return 1
57
+
58
+ model_size = get_model_size(model_info=model_info, precision=precision)
59
+
60
+ try:
61
+ license = model_info.cardData["license"]
62
+ except Exception:
63
+ license = "?"
64
+
65
+ eval_entry = {
66
+ "model": model_name,
67
+ "base_model": base_model,
68
+ "revision": revision,
69
+ "private": False,
70
+ "precision": precision,
71
+ "weight_type": weight_type,
72
+ "status": status,
73
+ "submitted_time": current_time,
74
+ "model_type": model_type,
75
+ "likes": model_info.likes,
76
+ "params": model_size,
77
+ "license": license,
78
+ }
79
+
80
+ user_name = ""
81
+ model_path = model_name
82
+ if "/" in model_name:
83
+ user_name = model_name.split("/")[0]
84
+ model_path = model_name.split("/")[1]
85
+
86
+ pprint.pprint(eval_entry)
87
+
88
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
89
+ click.echo("continuing...")
90
+
91
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
92
+ os.makedirs(out_dir, exist_ok=True)
93
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
94
+
95
+ with open(out_path, "w") as f:
96
+ f.write(json.dumps(eval_entry))
97
+
98
+ api.upload_file(
99
+ path_or_fileobj=out_path,
100
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
101
+ repo_id=QUEUE_REPO,
102
+ repo_type="dataset",
103
+ commit_message=f"Add {model_name} to eval queue",
104
+ )
105
+ else:
106
+ click.echo("aborting...")
107
+
108
+
109
+ if __name__ == "__main__":
110
+ main()
tests/test_evaluate_model.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ from unittest.mock import patch
3
+
4
+ import pandas as pd
5
+
6
+ import src.backend.evaluate_model as evaluate_model
7
+ import src.envs as envs
8
+
9
+
10
+ class TestEvaluator(unittest.TestCase):
11
+
12
+ def setUp(self):
13
+ self.model_name = 'test_model'
14
+ self.revision = 'test_revision'
15
+ self.precision = 'test_precision'
16
+ self.batch_size = 10
17
+ self.device = 'test_device'
18
+ self.no_cache = False
19
+ self.limit = 10
20
+
21
+ @patch('src.backend.evaluate_model.SummaryGenerator')
22
+ @patch('src.backend.evaluate_model.EvaluationModel')
23
+ def test_evaluator_initialization(self, mock_eval_model, mock_summary_generator):
24
+ evaluator = evaluate_model.Evaluator(self.model_name, self.revision,
25
+ self.precision, self.batch_size,
26
+ self.device, self.no_cache, self.limit)
27
+
28
+ mock_summary_generator.assert_called_once_with(self.model_name, self.revision)
29
+ mock_eval_model.assert_called_once_with(envs.HEM_PATH)
30
+ self.assertEqual(evaluator.model, self.model_name)
31
+
32
+ @patch('src.backend.evaluate_model.EvaluationModel')
33
+ @patch('src.backend.evaluate_model.SummaryGenerator')
34
+ def test_evaluator_initialization_error(self, mock_summary_generator, mock_eval_model):
35
+ mock_eval_model.side_effect = Exception('test_exception')
36
+ with self.assertRaises(Exception):
37
+ evaluate_model.Evaluator(self.model_name, self.revision,
38
+ self.precision, self.batch_size,
39
+ self.device, self.no_cache, self.limit)
40
+
41
+ @patch('src.backend.evaluate_model.SummaryGenerator')
42
+ @patch('src.backend.evaluate_model.EvaluationModel')
43
+ @patch('src.backend.evaluate_model.pd.read_csv')
44
+ @patch('src.backend.util.format_results')
45
+ def test_evaluate_method(self, mock_format_results, mock_read_csv, mock_eval_model,
46
+ mock_summary_generator):
47
+ evaluator = evaluate_model.Evaluator(self.model_name, self.revision,
48
+ self.precision, self.batch_size,
49
+ self.device, self.no_cache, self.limit)
50
+
51
+ # Mock setup
52
+ mock_format_results.return_value = {'test': 'result'}
53
+ mock_read_csv.return_value = pd.DataFrame({'column1': ['data1', 'data2']})
54
+ mock_summary_generator.return_value.generate_summaries.return_value = pd.DataFrame({'column1': ['summary1', 'summary2']})
55
+ mock_summary_generator.return_value.avg_length = 100
56
+ mock_summary_generator.return_value.answer_rate = 1.0
57
+ mock_summary_generator.return_value.error_rate = 0.0
58
+ mock_eval_model.return_value.compute_accuracy.return_value = 1.0
59
+ mock_eval_model.return_value.hallucination_rate = 0.0
60
+ mock_eval_model.return_value.evaluate_hallucination.return_value = [0.5]
61
+
62
+ # Method call and assertions
63
+ results = evaluator.evaluate()
64
+ mock_format_results.assert_called_once_with(model_name=self.model_name,
65
+ revision=self.revision,
66
+ precision=self.precision,
67
+ accuracy=1.0, hallucination_rate=0.0,
68
+ answer_rate=1.0, avg_summary_len=100,
69
+ error_rate=0.0)
70
+ mock_read_csv.assert_called_once_with(envs.SOURCE_PATH)
71
+
72
+ @patch('src.backend.evaluate_model.SummaryGenerator')
73
+ @patch('src.backend.evaluate_model.EvaluationModel')
74
+ @patch('src.backend.evaluate_model.pd.read_csv')
75
+ def test_evaluate_with_file_not_found(self, mock_read_csv, mock_eval_model,
76
+ mock_summary_generator):
77
+ mock_read_csv.side_effect = FileNotFoundError('test_exception')
78
+ evaluator = evaluate_model.Evaluator(self.model_name, self.revision,
79
+ self.precision, self.batch_size,
80
+ self.device, self.no_cache, self.limit)
81
+
82
+ with self.assertRaises(FileNotFoundError):
83
+ evaluator.evaluate()
84
+
85
+
86
+ if __name__ == '__main__':
87
+ unittest.main()
tests/test_evaluator.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ from unittest.mock import patch
3
+
4
+ import pandas as pd
5
+
6
+ import src.backend.model_operations as model_operations
7
+
8
+
9
+ class TestEvaluator(unittest.TestCase):
10
+
11
+ def setUp(self):
12
+ self.model_path = "test_model"
13
+
14
+ @patch("src.backend.model_operations.load_evaluation_model")
15
+ def test_init(self, mock_load_evaluation_model):
16
+ model_operations.EvaluationModel(self.model_path)
17
+ mock_load_evaluation_model.assert_called_once_with(self.model_path)
18
+
19
+ @patch("src.backend.model_operations.load_evaluation_model")
20
+ def test_evaluate_hallucination(self, mock_load_evaluation_model):
21
+ model = model_operations.EvaluationModel(self.model_path)
22
+ df = pd.DataFrame({'source': ['source1', 'source2'], 'summary': ['summary1', 'summary2']})
23
+
24
+ mock_load_evaluation_model.return_value.predict.return_value = [0.8, 0.2]
25
+
26
+ scores = model.evaluate_hallucination(df)
27
+ self.assertEqual(scores, [0.8, 0.2])
28
+
29
+ @patch("src.backend.model_operations.load_evaluation_model")
30
+ def test_evaluate_hallucination_exception(self, mock_load_evaluation_model):
31
+ model = model_operations.EvaluationModel(self.model_path)
32
+ df = pd.DataFrame({'source': ['source1', 'source2'], 'summary': ['summary1', 'summary2']})
33
+
34
+ mock_load_evaluation_model.return_value.predict.side_effect = Exception("Test exception")
35
+
36
+ with self.assertRaises(Exception):
37
+ scores = model.evaluate_hallucination(df)
38
+
39
+ @patch("src.backend.model_operations.load_evaluation_model")
40
+ def test_compute_accuracy(self, mock_load_evaluation_model):
41
+ model = model_operations.EvaluationModel(self.model_path)
42
+ model.scores = [0.8, 0.2]
43
+
44
+ accuracy = model.compute_accuracy()
45
+ expected_accuracy = 50.0
46
+ self.assertEqual(accuracy, expected_accuracy)
47
+
48
+
49
+ class TestLoadEvaluationModel(unittest.TestCase):
50
+
51
+ @patch("src.backend.model_operations.CrossEncoder")
52
+ def test_load_evaluation_model(self, mock_cross_encoder):
53
+ model_path = 'test_model_path'
54
+ model_operations.load_evaluation_model(model_path)
55
+ mock_cross_encoder.assert_called_once_with(model_path)
56
+
57
+
58
+ if __name__ == '__main__':
59
+ unittest.main()
tests/test_main_backend.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ from unittest.mock import patch
3
+
4
+ import main_backend
5
+ import src.backend.manage_requests as manage_requests
6
+
7
+
8
+ class TestMainBackend(unittest.TestCase):
9
+
10
+ @patch('src.backend.manage_requests.check_completed_evals')
11
+ @patch('src.backend.manage_requests.get_eval_requests')
12
+ @patch('src.backend.sort_queue.sort_models_by_priority')
13
+ @patch('src.backend.manage_requests.set_eval_request')
14
+ @patch('src.backend.run_eval_suite.run_evaluation')
15
+ def test_run_auto_eval_with_pending_requests(self, mock_run_evaluation, mock_set_eval_request,
16
+ mock_sort_models_by_priority, mock_get_eval_requests,
17
+ mock_check_completed_evals):
18
+ mock_sort_models_by_priority.return_value = [manage_requests.EvalRequest(
19
+ model="test_model",
20
+ private=True,
21
+ status="PENDING",
22
+ json_filepath="test_filepath",
23
+ weight_type="test_weight_type",
24
+ precision="test_precision",
25
+ base_model="test_base_model",
26
+ revision="test_revision",
27
+ )]
28
+
29
+ main_backend.run_auto_eval()
30
+
31
+ # Assertions
32
+ mock_check_completed_evals.assert_called()
33
+ mock_get_eval_requests.assert_called()
34
+ mock_sort_models_by_priority.assert_called()
35
+ mock_set_eval_request.assert_called()
36
+ mock_run_evaluation.assert_called()
37
+
38
+ @patch('builtins.print')
39
+ @patch('src.backend.manage_requests.check_completed_evals')
40
+ @patch('src.backend.manage_requests.get_eval_requests')
41
+ def test_run_auto_eval_with_no_pending_requests(self, mock_get_eval_requests,
42
+ mock_check_completed_evals, mock_print):
43
+ mock_get_eval_requests.return_value = []
44
+
45
+ main_backend.run_auto_eval()
46
+
47
+ # Assertions
48
+ mock_check_completed_evals.assert_called()
49
+ mock_get_eval_requests.assert_called()
50
+ mock_print.assert_any_call("No eval requests found. Exiting.")
51
+
52
+
53
+ if __name__ == "__main__":
54
+ unittest.main()
tests/test_summary_generator.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ from unittest.mock import patch
3
+
4
+ import pandas as pd
5
+
6
+ import src.backend.evaluate_model as evaluate_model
7
+
8
+
9
+ class TestSummaryGenerator(unittest.TestCase):
10
+
11
+ def setUp(self):
12
+ self.model_id = "test_model"
13
+ self.revision = "test_revision"
14
+
15
+ @patch("src.backend.model_operations.AutoTokenizer")
16
+ @patch("src.backend.model_operations.AutoModelForCausalLM")
17
+ def test_init(self, mock_model, mock_tokenizer):
18
+ evaluate_model.SummaryGenerator(self.model_id, self.revision)
19
+ mock_tokenizer.from_pretrained.assert_called_once_with(self.model_id,
20
+ self.revision)
21
+ mock_model.from_pretrained.assert_called_once_with(self.model_id,
22
+ self.revision)
23
+
24
+ @patch("src.backend.model_operations.nlp")
25
+ @patch("src.backend.model_operations.AutoTokenizer")
26
+ @patch("src.backend.model_operations.AutoModelForCausalLM")
27
+ def test_generate_summaries(self, mock_model, mock_tokenizer, mock_nlp):
28
+ df = pd.DataFrame({'text': ['text1', 'text2'],
29
+ 'dataset': ['dataset1', 'dataset2']})
30
+
31
+ generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
32
+ generator.generate_summaries(df)
33
+
34
+ self.assertEqual(len(generator.summaries_df), len(df))
35
+
36
+ @patch("src.backend.model_operations.AutoTokenizer")
37
+ @patch("src.backend.model_operations.AutoModelForCausalLM")
38
+ def test_compute_avg_length(self, mock_model, mock_tokenizer):
39
+ generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
40
+ test_df = pd.DataFrame({'source': ['text'], 'summary': ['This is a test.'],
41
+ 'dataset': ['dataset']})
42
+ generator.summaries_df = test_df
43
+ generator._compute_avg_length()
44
+ self.assertEqual(generator.avg_length, 4)
45
+
46
+ @patch("src.backend.model_operations.AutoTokenizer")
47
+ @patch("src.backend.model_operations.AutoModelForCausalLM")
48
+ def test_compute_answer_rate(self, mock_model, mock_tokenizer):
49
+ generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
50
+ test_df = pd.DataFrame({'source': ['text'], 'summary': ['This is a test.'],
51
+ 'dataset': ['dataset']})
52
+ generator.summaries_df = test_df
53
+ generator._compute_answer_rate()
54
+ self.assertEqual(generator.answer_rate, 1)
55
+
56
+ @patch("src.backend.model_operations.AutoTokenizer")
57
+ @patch("src.backend.model_operations.AutoModelForCausalLM")
58
+ def test_error_rate(self, mock_model, mock_tokenizer):
59
+ generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
60
+ test_df = pd.DataFrame({'source': ['text'], 'summary': ['This is a test.'],
61
+ 'dataset': ['dataset']})
62
+ generator.summaries_df = test_df
63
+ generator._compute_error_rate(0)
64
+ self.assertEqual(generator.error_rate, 0)
65
+
66
+
67
+ if __name__ == "__main__":
68
+ unittest.main()