Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,136 +1,136 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
-
from langchain.vectorstores import FAISS
|
5 |
-
from langchain.text_splitter import CharacterTextSplitter
|
6 |
-
from langchain.document_loaders import PyPDFLoader
|
7 |
-
import os
|
8 |
-
|
9 |
-
# Load the model client
|
10 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
-
|
12 |
-
# Initialize vector store
|
13 |
-
vector_store = None
|
14 |
-
|
15 |
-
# Preload and process the PDF document
|
16 |
-
#PDF_PATH = "
|
17 |
-
|
18 |
-
PDF_PATH =
|
19 |
-
|
20 |
-
def preload_pdf():
|
21 |
-
global vector_store
|
22 |
-
|
23 |
-
# Load PDF and extract text
|
24 |
-
loader = PyPDFLoader(PDF_PATH)
|
25 |
-
documents = loader.load()
|
26 |
-
|
27 |
-
# Split the text into smaller chunks for retrieval
|
28 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
29 |
-
docs = text_splitter.split_documents(documents)
|
30 |
-
|
31 |
-
# Compute embeddings for the chunks
|
32 |
-
embeddings = HuggingFaceEmbeddings()
|
33 |
-
vector_store = FAISS.from_documents(docs, embeddings)
|
34 |
-
|
35 |
-
print(f"PDF '{PDF_PATH}' loaded and indexed successfully.")
|
36 |
-
|
37 |
-
# Response generation
|
38 |
-
def respond(
|
39 |
-
message,
|
40 |
-
history: list[tuple[str, str]],
|
41 |
-
system_message,
|
42 |
-
# max_tokens,
|
43 |
-
# temperature,
|
44 |
-
# top_p,
|
45 |
-
):
|
46 |
-
global vector_store
|
47 |
-
|
48 |
-
if vector_store is None:
|
49 |
-
return "The PDF document is not loaded. Please check the code setup."
|
50 |
-
|
51 |
-
# Retrieve relevant chunks from the PDF
|
52 |
-
relevant_docs = vector_store.similarity_search(message, k=3)
|
53 |
-
context = "\n".join([doc.page_content for doc in relevant_docs])
|
54 |
-
|
55 |
-
# Combine system message, context, and user message
|
56 |
-
full_system_message = (
|
57 |
-
f"{system_message}\n\nContext from the document:\n{context}\n\n"
|
58 |
-
)
|
59 |
-
|
60 |
-
messages = [{"role": "system", "content": full_system_message}]
|
61 |
-
|
62 |
-
for val in history:
|
63 |
-
if val[0]:
|
64 |
-
messages.append({"role": "user", "content": val[0]})
|
65 |
-
if val[1]:
|
66 |
-
messages.append({"role": "assistant", "content": val[1]})
|
67 |
-
|
68 |
-
messages.append({"role": "user", "content": message})
|
69 |
-
|
70 |
-
response = ""
|
71 |
-
|
72 |
-
for message in client.chat_completion(
|
73 |
-
messages,
|
74 |
-
# max_tokens=max_tokens,
|
75 |
-
stream=True,
|
76 |
-
# temperature=temperature,
|
77 |
-
# top_p=top_p,
|
78 |
-
):
|
79 |
-
token = message.choices[0].delta.content
|
80 |
-
response += token
|
81 |
-
yield response
|
82 |
-
|
83 |
-
# Gradio interface
|
84 |
-
#demo = gr.Blocks()
|
85 |
-
|
86 |
-
demo = gr.Blocks(css="""
|
87 |
-
|
88 |
-
.gr-chat-container {
|
89 |
-
display: flex;
|
90 |
-
background-color: skyblue;
|
91 |
-
justify-content: center;
|
92 |
-
align-items: center;
|
93 |
-
height: 100vh;
|
94 |
-
padding: 20px;
|
95 |
-
}
|
96 |
-
|
97 |
-
.gr-chat {
|
98 |
-
height: 80vh;
|
99 |
-
width: 70vw;
|
100 |
-
justify-content: center;
|
101 |
-
align-items: center;
|
102 |
-
border: 1px solid #ccc;
|
103 |
-
padding: 10px;
|
104 |
-
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.1);
|
105 |
-
overflow-y: auto;
|
106 |
-
}
|
107 |
-
""")
|
108 |
-
|
109 |
-
|
110 |
-
with demo:
|
111 |
-
with gr.Row(elem_classes=["gr-chat-container"]):
|
112 |
-
with gr.Column(elem_classes=["gr-chat"]):
|
113 |
-
chatbot = gr.ChatInterface(
|
114 |
-
respond,
|
115 |
-
additional_inputs=[
|
116 |
-
gr.Textbox(
|
117 |
-
value=(
|
118 |
-
"You are going to act like a medical practitioner. Hear the symptoms, "
|
119 |
-
"diagnose the disease, mention the disease name as heading, and suggest tips "
|
120 |
-
"to overcome the issue. Base your answers on the provided document. limit the response to 3-4 sentences. list out the response point by point"
|
121 |
-
),visible=False,
|
122 |
-
label="System message",
|
123 |
-
),
|
124 |
-
],
|
125 |
-
examples=[
|
126 |
-
["I am not well and feeling feverish, tired"],
|
127 |
-
["Can you guide me through quick health tips?"],
|
128 |
-
["How do I stop worrying about things I can't control?"],
|
129 |
-
],
|
130 |
-
title="Diagnify 🕊️",
|
131 |
-
)
|
132 |
-
|
133 |
-
|
134 |
-
if __name__ == "__main__":
|
135 |
-
preload_pdf()
|
136 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.document_loaders import PyPDFLoader
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the model client
|
10 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
+
|
12 |
+
# Initialize vector store
|
13 |
+
vector_store = None
|
14 |
+
|
15 |
+
# Preload and process the PDF document
|
16 |
+
#PDF_PATH = "general symptoms.pdf" # Path to the pre-defined PDF document
|
17 |
+
|
18 |
+
PDF_PATH ="general symptoms.pdf"
|
19 |
+
|
20 |
+
def preload_pdf():
|
21 |
+
global vector_store
|
22 |
+
|
23 |
+
# Load PDF and extract text
|
24 |
+
loader = PyPDFLoader(PDF_PATH)
|
25 |
+
documents = loader.load()
|
26 |
+
|
27 |
+
# Split the text into smaller chunks for retrieval
|
28 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
29 |
+
docs = text_splitter.split_documents(documents)
|
30 |
+
|
31 |
+
# Compute embeddings for the chunks
|
32 |
+
embeddings = HuggingFaceEmbeddings()
|
33 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
34 |
+
|
35 |
+
print(f"PDF '{PDF_PATH}' loaded and indexed successfully.")
|
36 |
+
|
37 |
+
# Response generation
|
38 |
+
def respond(
|
39 |
+
message,
|
40 |
+
history: list[tuple[str, str]],
|
41 |
+
system_message,
|
42 |
+
# max_tokens,
|
43 |
+
# temperature,
|
44 |
+
# top_p,
|
45 |
+
):
|
46 |
+
global vector_store
|
47 |
+
|
48 |
+
if vector_store is None:
|
49 |
+
return "The PDF document is not loaded. Please check the code setup."
|
50 |
+
|
51 |
+
# Retrieve relevant chunks from the PDF
|
52 |
+
relevant_docs = vector_store.similarity_search(message, k=3)
|
53 |
+
context = "\n".join([doc.page_content for doc in relevant_docs])
|
54 |
+
|
55 |
+
# Combine system message, context, and user message
|
56 |
+
full_system_message = (
|
57 |
+
f"{system_message}\n\nContext from the document:\n{context}\n\n"
|
58 |
+
)
|
59 |
+
|
60 |
+
messages = [{"role": "system", "content": full_system_message}]
|
61 |
+
|
62 |
+
for val in history:
|
63 |
+
if val[0]:
|
64 |
+
messages.append({"role": "user", "content": val[0]})
|
65 |
+
if val[1]:
|
66 |
+
messages.append({"role": "assistant", "content": val[1]})
|
67 |
+
|
68 |
+
messages.append({"role": "user", "content": message})
|
69 |
+
|
70 |
+
response = ""
|
71 |
+
|
72 |
+
for message in client.chat_completion(
|
73 |
+
messages,
|
74 |
+
# max_tokens=max_tokens,
|
75 |
+
stream=True,
|
76 |
+
# temperature=temperature,
|
77 |
+
# top_p=top_p,
|
78 |
+
):
|
79 |
+
token = message.choices[0].delta.content
|
80 |
+
response += token
|
81 |
+
yield response
|
82 |
+
|
83 |
+
# Gradio interface
|
84 |
+
#demo = gr.Blocks()
|
85 |
+
|
86 |
+
demo = gr.Blocks(css="""
|
87 |
+
|
88 |
+
.gr-chat-container {
|
89 |
+
display: flex;
|
90 |
+
background-color: skyblue;
|
91 |
+
justify-content: center;
|
92 |
+
align-items: center;
|
93 |
+
height: 100vh;
|
94 |
+
padding: 20px;
|
95 |
+
}
|
96 |
+
|
97 |
+
.gr-chat {
|
98 |
+
height: 80vh;
|
99 |
+
width: 70vw;
|
100 |
+
justify-content: center;
|
101 |
+
align-items: center;
|
102 |
+
border: 1px solid #ccc;
|
103 |
+
padding: 10px;
|
104 |
+
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.1);
|
105 |
+
overflow-y: auto;
|
106 |
+
}
|
107 |
+
""")
|
108 |
+
|
109 |
+
|
110 |
+
with demo:
|
111 |
+
with gr.Row(elem_classes=["gr-chat-container"]):
|
112 |
+
with gr.Column(elem_classes=["gr-chat"]):
|
113 |
+
chatbot = gr.ChatInterface(
|
114 |
+
respond,
|
115 |
+
additional_inputs=[
|
116 |
+
gr.Textbox(
|
117 |
+
value=(
|
118 |
+
"You are going to act like a medical practitioner. Hear the symptoms, "
|
119 |
+
"diagnose the disease, mention the disease name as heading, and suggest tips "
|
120 |
+
"to overcome the issue. Base your answers on the provided document. limit the response to 3-4 sentences. list out the response point by point"
|
121 |
+
),visible=False,
|
122 |
+
label="System message",
|
123 |
+
),
|
124 |
+
],
|
125 |
+
examples=[
|
126 |
+
["I am not well and feeling feverish, tired"],
|
127 |
+
["Can you guide me through quick health tips?"],
|
128 |
+
["How do I stop worrying about things I can't control?"],
|
129 |
+
],
|
130 |
+
title="Diagnify 🕊️",
|
131 |
+
)
|
132 |
+
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
preload_pdf()
|
136 |
+
demo.launch()
|