Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.document_loaders import PyPDFLoader | |
import os | |
# Load the model client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Initialize vector store | |
vector_store = None | |
# Preload and process the PDF document | |
#PDF_PATH = "general symptoms.pdf" # Path to the pre-defined PDF document | |
#PDF_PATH = "general symptoms.pdf" | |
PDF_PATH = "general symptoms.pdf" | |
def preload_pdf(): | |
global vector_store | |
# Load PDF and extract text | |
loader = PyPDFLoader(PDF_PATH) | |
documents = loader.load() | |
# Split the text into smaller chunks for retrieval | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
docs = text_splitter.split_documents(documents) | |
# Compute embeddings for the chunks | |
embeddings = HuggingFaceEmbeddings() | |
vector_store = FAISS.from_documents(docs, embeddings) | |
print(f"PDF '{PDF_PATH}' loaded and indexed successfully.") | |
# Response generation | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
global vector_store | |
if vector_store is None: | |
return "The PDF document is not loaded. Please check the code setup." | |
# Retrieve relevant chunks from the PDF | |
relevant_docs = vector_store.similarity_search(message, k=3) | |
context = "\n".join([doc.page_content for doc in relevant_docs]) | |
# Combine system message, context, and user message | |
full_system_message = ( | |
f"{system_message}\n\nContext from the document:\n{context}\n\n" | |
) | |
messages = [{"role": "system", "content": full_system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio interface | |
#demo = gr.Blocks() | |
demo = gr.Blocks(css=""" | |
.gr-chat-container { | |
display: flex; | |
background-color: skyblue; | |
justify-content: center; | |
align-items: center; | |
height: 90vh; | |
padding: 20px; | |
} | |
.gr-chat { | |
height: 80vh; | |
justify-content: center; | |
align-items: center; | |
border: 1px solid #ccc; | |
padding: 10px; | |
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.1); | |
} | |
""") | |
with demo: | |
with gr.Row(elem_classes=["gr-chat-container"]): | |
#with gr.Row(): | |
with gr.Column(elem_classes=["gr-chat"]): | |
#with gr.Column(): | |
chatbot = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value=( | |
"You are going to act like a medical practitioner. Hear the symptoms, " | |
"diagnose the disease, mention the disease in seperate line, suggest tips to overcome the issue and suggest some good habits " | |
"to overcome the issue. Base your answers on the provided document. limit the response to 5 to 6 sentence point by point" | |
),visible=False, | |
label="system_message", | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1,visible=False, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, visible=False,label="Temperature"), | |
gr.Slider(minimum=0.1,maximum=1.0,value=0.95,step=0.05,visible=False,label="Top-p (nucleus sampling)", ), | |
], | |
examples=[ | |
["I am not well and feeling feverish, tired?"], | |
["Can you guide me through quick health tips?"], | |
["How do I stop worrying about things I can't control?"], | |
], | |
title="Diagnify ποΈ", | |
) | |
if __name__ == "__main__": | |
preload_pdf() | |
demo.launch() | |