Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.document_loaders import PyPDFLoader | |
import os | |
# Load the model client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Initialize vector store | |
vector_store = None | |
# Preload and process the PDF document | |
PDF_PATH = "generalsymptoms.pdf" # Path to the pre-defined PDF document | |
def preload_pdf(): | |
global vector_store | |
# Load PDF and extract text | |
loader = PyPDFLoader(PDF_PATH) | |
documents = loader.load() | |
# Split the text into smaller chunks for retrieval | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
docs = text_splitter.split_documents(documents) | |
# Compute embeddings for the chunks | |
embeddings = HuggingFaceEmbeddings() | |
vector_store = FAISS.from_documents(docs, embeddings) | |
print(f"PDF '{PDF_PATH}' loaded and indexed successfully.") | |
# Response generation | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
global vector_store | |
if vector_store is None: | |
return "The PDF document is not loaded. Please check the code setup." | |
# Retrieve relevant chunks from the PDF | |
relevant_docs = vector_store.similarity_search(message, k=3) | |
context = "\n".join([doc.page_content for doc in relevant_docs]) | |
# Combine system message, context, and user message | |
full_system_message = ( | |
f"{system_message}\n\nContext from the document:\n{context}\n\n" | |
) | |
messages = [{"role": "system", "content": full_system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value=( | |
"You are going to act like a medical practitioner. Hear the symptoms, " | |
"diagnose the disease, mention the disease name as heading, and suggest tips " | |
"to overcome the issue. Base your answers on the provided document. limit the response to 3-4 sentences. list out the response point by point" | |
), visible=False, | |
label="System message", | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1,visible=False, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, visible=False,label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05,visible=False, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
examples=[ | |
["I feel stressed."], | |
["Can you guide me through quick health tips?"], | |
["How do I stop worrying about things I can't control?"] | |
], | |
title = "Diagnify ποΈ" | |
) | |
if __name__ == "__main__": | |
preload_pdf() | |
demo.launch() | |