Spaces:
Runtime error
Runtime error
File size: 9,342 Bytes
05d0e41 39c7d2d 05d0e41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
"""
**Aim:** This is the final code of video blur along with UI
**Author:** Shalu Singh
**Starting Date:** 12/9/23
**Ending Date:** 14/1/24
"""
# import libraries
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import cv2
import os
import pandas as pd
import keras
import gradio
from concurrent.futures import ThreadPoolExecutor
from moviepy.editor import VideoFileClip, concatenate_videoclips
# path to ouput video
out_video_path = 'blured_op_video.mp4'
# class label
coco_classes = {
0: 'unlabeled',
1: 'person',
2: 'bicycle',
3: 'car',
4: 'motorcycle',
5: "airplane",
6: "bus",
7: "train",
8: "truck",
9: "boat",
10:" traffic light",
11: "fire hydrant",
12: "street sign",
13: "stop |sign",
14: "parking meter",
15: "bench",
16: "bird",
17: "cat",
18: "dog",
19: "horse",
20: "sheep",
21: "cow",
22: "elephant",
23:" bear",
24: "zebra",
25: "giraffe",
26: "hat",
27: "backpack",
28: "umbrella",
29: "shoe",
30: "eye glasses",
31: "handbag",
32:" tie",
33: "suitcase",
34:" frisbee",
35: "skis",
36: "snowboard",
37: "sports ball",
38: "kite",
39: "baseball bat",
40: "baseball glove",
41: "skateboard",
42: "surfboard",
43: "tennis racket",
44: "bottle",
45: "plate",
46: "wine glass",
47: "cup",
48: "fork",
49: "knife",
50: "spoon",
51: "bowl",
52: "banana",
53:"apple",
54:"sandwich",
55:" orange",
56: "broccoli",
57: "carrot",
58: "hot dog",
59:' pizza',
60: "donut",
61: 'cake',
62: "chair",
63: "couch",
64: "potted plant",
65: "bed",
66: "mirror",
67: "dining table",
68: "window",
69: "desk",
70: "toilet",
71: "door",
72: "tv",
73:" laptop",
74: "mouse",
75: "remote",
76:" keyboard",
77: "cell phone",
78: "microwave",
79: "oven",
80: "toaster",
81: "sink",
82: "refrigerator",
83: "blender",
84: "book",
85:"clock",
86: "vase",
87: "scissors",
88: "teddy bear",
89: "hair drier",
90: "toothbrush",
}
coco_encode = {value:key for key,value in coco_classes.items()}
coco_labels = list(coco_classes.values())
# function: blur the image
def blur_image(image = None,coordinates = None,blur_value = 3):
#print('*********** INSIDE [blur_image()] *********]')
img = image.copy() # copy the image to work on new image
if (coordinates is not None):
#print('Performing image blur operation...')
for coord in (coordinates):
ymin,xmin,ymax,xmax = coord
#print('Image shape:',img.shape)
# Extract region of intrest
Y_min,X_min,Y_max,X_max = int(ymin*img.shape[0]),int(xmin*img.shape[1]),int(ymax*img.shape[0]),int(xmax*img.shape[1])
#print('Y_min,Y_max',Y_min,Y_max)
#print('X_min,X_max',X_min,X_max)
roi = img[Y_min:Y_max,X_min:X_max]
#show_img(roi,'Original_roi')
# blur the extracted img using Gausian blur
try:
roi = cv2.GaussianBlur(roi,ksize = (blur_value,blur_value),sigmaX = 0)
#show_img(roi,title='blured roi')
# replace the original roi with blured_roi
img[Y_min:Y_max, X_min:X_max] = roi
except:
pass
return img
# function: filter detection boxs
def filter_detection(detector_output,select_classes,thr = 0.6):
# print('********* INSIDE [filter_detection()] **********')
detection_boxs = detector_output['detection_boxes']
detection_class = detector_output['detection_classes']
detection_scores = detector_output['detection_scores']
# get the masking to select classes which user choosed
masked_classes = np.isin(detection_class,select_classes)
# select only selected classes
detection_class = detection_class[masked_classes]
detection_boxs = detection_boxs[masked_classes]
detection_scores = detection_scores[masked_classes]
# filter the detection boxses based on threshold
selected_scores = detection_scores[detection_scores >= thr]
selected_class = detection_class[detection_scores >= thr]
selected_boxs = detection_boxs[detection_scores >= thr].numpy()
return selected_boxs,selected_class,selected_scores
# get the input video
# load video from local disk
def load_input(ip_path):
#print('******* INSIDE [load_input] ********')
try:
cap = cv2.VideoCapture(ip_path)
print('Video loaded successfully!')
return cap
except:
print("Failed! to load video")
#function: get video property like frame_width,frame_heigh,frame_per_second(fps),codecc
def out_video(cap):
#print('******** INSIDE [out_video] ***********')
frame_width = int(cap.get(3)) # width of the fames in the video
frame_height = int(cap.get(4)) # height of the frame in the video
fps = int(cap.get(5)) # frame per second
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
video_duration = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))/ fps
codecc = cv2.VideoWriter_fourcc(*'mp4V') # codecc for output video ( h264 codecc)
# video property info
print('Frame Width:',frame_width)
print('Frame height:',frame_height)
print('Frame Per Second:',fps)
print('Total frames:',total_frames)
print('video_duration: {} minutes'.format(round(video_duration/60),2))
# VideoWriter object to save blured video
out = cv2.VideoWriter(out_video_path,codecc,fps,(frame_width,frame_height))
return out,fps,total_frames,video_duration
# function: to get time range to perfrom blur
def time_range(start_time,end_time):
#print('*********** INSIDE [time_range()] ************')
start_time,end_time = start_time,end_time # change to second(s) format
return start_time,end_time
# function: to check if time range is valid or not
def is_valid_time_range(start_time,end_time,video_duration):
#print('********** INSIDE [valid_time_range()] *************')
return (0 <= start_time < end_time <= video_duration)
# load model
object_detection_model = hub.load("https://www.kaggle.com/models/tensorflow/efficientdet/frameworks/TensorFlow2/variations/d2/versions/1")
def blur_video(input_video_path, u_classes, start_time, end_time):
print('STARTING OF PROCESSING...')
print("u_classes:",u_classes,type(u_classes))
label_encode = np.array([coco_encode[i] for i in u_classes], dtype='float16')
print('label_encode:',label_encode,type(label_encode))
cap = load_input(ip_path=input_video_path)
out, fps, total_frames, video_duration = out_video(cap)
start_time, end_time = time_range(start_time, end_time)
if is_valid_time_range(start_time, end_time, video_duration):
start_frame = int(start_time * fps)
end_frame = int(end_time * fps)
print('Start Frame:', start_frame)
print('End Frame:', end_frame)
with ThreadPoolExecutor(max_workers=4) as executor: # Adjust max_workers as needed
futures = []
for i in range(total_frames):
ret, frame = cap.read()
if ret:
frame = tf.expand_dims(frame, axis=0)
else:
break
if start_frame <= i <= end_frame:
print('Blured_frame:',i)
future = executor.submit(blur_process, frame, label_encode)
futures.append(future)
else:
out.write(frame[0].numpy())
for future in futures:
blured_img = future.result()
out.write(blured_img)
cap.release()
out.release()
return out_video_path
def blur_process(frame,l_encoder,blur_value):
print('label_encode',l_encoder)
frame = np.expand_dims(frame,axis = 0)
detector_output = object_detection_model(frame)
boxes,classes,scores = filter_detection(detector_output,l_encoder)
blured_img = blur_image(frame[0],boxes,blur_value)
return blured_img
def process_and_concat_video(input_video_path,u_classes,blur_value,start_time, end_time):
label_encode = np.array([coco_encode[i] for i in u_classes],dtype = 'float16')
# Load the full video clip
full_video_clip = VideoFileClip(input_video_path)
# Process the specified part of the video
processed_clip = full_video_clip.subclip(start_time, end_time).set_duration(end_time - start_time)
processed_clip = processed_clip.fl_image(lambda frame: blur_process(frame,label_encode,blur_value))
print('final clip fps:',full_video_clip.fps)
print('processed_clip fps:',processed_clip.fps)
# Concatenate the processed and unprocessed parts
final_clip = concatenate_videoclips([full_video_clip.subclip(0, start_time),
processed_clip,
full_video_clip.subclip(end_time, None)])
final_clip.set_fps = 25 # Assuming desired FPS is 25
# Write the final video to an output file with the specified fps
out_video_path = "output_video.mp4"
final_clip.write_videofile(out_video_path, codec="h264", audio_codec="aac",fps = 25)
return out_video_path
if __name__ == "__main__":
import gradio as gr
iface = gr.Interface(
fn=process_and_concat_video,
inputs=[
gr.Video(label="Upload Video"),
gr.CheckboxGroup(choices=coco_labels[1:], label="Select Classes"),
gr.Slider(label = "blur intensity",minimum = 3,maximum = 90, step = 3),
gr.Number(label="Start Time (seconds)"),
gr.Number(label="End Time (seconds)"),
],
outputs= "video",
title = 'BlurVista 👓'
)
iface.launch(debug = True,inline = False)
|