|
|
|
import gradio as gr
|
|
from load_image import load_img
|
|
import spaces
|
|
from transformers import AutoModelForImageSegmentation
|
|
import torch
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
import os
|
|
import numpy as np
|
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0])
|
|
|
|
|
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
|
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
|
).to("cuda")
|
|
|
|
|
|
RMBG2 = AutoModelForImageSegmentation.from_pretrained(
|
|
"briaai/RMBG-2.0", trust_remote_code=True
|
|
).to("cuda")
|
|
|
|
|
|
models_dict = {
|
|
"BiRefNet": birefnet,
|
|
"RMBG-2.0": RMBG2,
|
|
}
|
|
|
|
|
|
|
|
transform_image = transforms.Compose(
|
|
[
|
|
transforms.Resize((1024, 1024)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
]
|
|
)
|
|
|
|
@spaces.GPU
|
|
def process(image: Image.Image, model_choice: str):
|
|
"""
|
|
Runs inference to remove the background (adds alpha)
|
|
with the chosen segmentation model.
|
|
"""
|
|
|
|
current_model = models_dict[model_choice]
|
|
|
|
|
|
image_size = image.size
|
|
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
|
preds = current_model(input_images)[-1].sigmoid().cpu()
|
|
|
|
|
|
pred = preds[0].squeeze()
|
|
pred_pil = transforms.ToPILImage()(pred)
|
|
|
|
|
|
mask = pred_pil.resize(image_size)
|
|
|
|
|
|
image.putalpha(mask)
|
|
return image
|
|
|
|
def fn(source: str, model_choice: str):
|
|
"""
|
|
Used by Tab 1 & Tab 2 to produce a processed image with alpha.
|
|
- 'source' is either a file path (type="filepath") or
|
|
a URL string (textbox).
|
|
- 'model_choice' is the user's selection from the radio.
|
|
"""
|
|
|
|
im = load_img(source, output_type="pil")
|
|
im = im.convert("RGB")
|
|
|
|
|
|
processed_image = process(im, model_choice)
|
|
return processed_image
|
|
|
|
def process_file(file_path: str, model_choice: str):
|
|
"""
|
|
For Tab 3 (file output).
|
|
- Accepts a local path, returns path to a new .png with alpha channel.
|
|
- 'model_choice' is also passed in for selecting the model.
|
|
"""
|
|
name_path = file_path.rsplit(".", 1)[0] + ".png"
|
|
im = load_img(file_path, output_type="pil")
|
|
im = im.convert("RGB")
|
|
|
|
|
|
transparent = process(im, model_choice)
|
|
transparent.save(name_path)
|
|
return name_path
|
|
|
|
|
|
|
|
|
|
model_selector_1 = gr.Radio(
|
|
choices=["BiRefNet", "RMBG-2.0"],
|
|
value="BiRefNet",
|
|
label="Select Model"
|
|
)
|
|
model_selector_2 = gr.Radio(
|
|
choices=["BiRefNet", "RMBG-2.0"],
|
|
value="BiRefNet",
|
|
label="Select Model"
|
|
)
|
|
model_selector_3 = gr.Radio(
|
|
choices=["BiRefNet", "RMBG-2.0"],
|
|
value="BiRefNet",
|
|
label="Select Model"
|
|
)
|
|
|
|
|
|
processed_img_upload = gr.Image(label="Processed Image (Upload)", type="pil")
|
|
processed_img_url = gr.Image(label="Processed Image (URL)", type="pil")
|
|
|
|
|
|
image_upload = gr.Image(label="Upload an image", type="filepath")
|
|
image_file_upload = gr.Image(label="Upload an image", type="filepath")
|
|
|
|
|
|
url_input = gr.Textbox(label="Paste an image URL")
|
|
|
|
|
|
output_file = gr.File(label="Output PNG File")
|
|
|
|
|
|
tab1 = gr.Interface(
|
|
fn=fn,
|
|
inputs=[image_upload, model_selector_1],
|
|
outputs=processed_img_upload,
|
|
examples=[["ironman.jpg", "BiRefNet/RMBG"]],
|
|
api_name="image",
|
|
description="Upload an image and choose your background removal model."
|
|
)
|
|
|
|
|
|
tab2 = gr.Interface(
|
|
fn=fn,
|
|
inputs=[url_input, model_selector_2],
|
|
outputs=processed_img_url,
|
|
api_name="text",
|
|
description="Paste an image URL and choose your background removal model."
|
|
)
|
|
|
|
|
|
tab3 = gr.Interface(
|
|
fn=process_file,
|
|
inputs=[image_file_upload, model_selector_3],
|
|
outputs=output_file,
|
|
examples=[["ironman.jpg", "BiRefNet/RMBG"]],
|
|
api_name="png",
|
|
description="Upload an image, choose a model, and get a transparent PNG."
|
|
)
|
|
|
|
|
|
demo = gr.TabbedInterface(
|
|
[tab1, tab2, tab3],
|
|
["Image Upload", "URL Input", "File Output"],
|
|
title="Background Removal Tool"
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch(show_error=True, share=True)
|
|
|
|
|
|
|