import gradio as gr import tensorflow as tf import numpy as np import joblib from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences model = tf.keras.models.load_model("best_model.h5") english_tokenizer = joblib.load('english_tokenizer') hindi_tokenizer = joblib.load('hindi_tokenizer') def generate_text(txts): txts = txts.split() tmp_tok = english_tokenizer.texts_to_sequences(txts) tmp_pad = pad_sequences(tmp_tok, padding='post', maxlen=100, truncating='post') tmp_preds = model.predict(tmp_pad,verbose=0) res = [] for pred in tmp_preds: text2 = hindi_tokenizer.sequences_to_texts([[np.argmax(p)] for p in pred]) res.append("".join(text2)) return " ".join(res) demo = gr.Interface(fn=generate_text, inputs="text", outputs="text", examples=[['Agra'],['Namaste'],['Shadab Sayeed'],['Mumbai']]) demo.launch()