shadabsayd's picture
Update app.py
55e2618
import gradio as gr
import tensorflow as tf
import numpy as np
import joblib
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
model = tf.keras.models.load_model("best_model.h5")
english_tokenizer = joblib.load('english_tokenizer')
hindi_tokenizer = joblib.load('hindi_tokenizer')
def generate_text(txts):
txts = txts.split()
tmp_tok = english_tokenizer.texts_to_sequences(txts)
tmp_pad = pad_sequences(tmp_tok, padding='post', maxlen=100, truncating='post')
tmp_preds = model.predict(tmp_pad,verbose=0)
res = []
for pred in tmp_preds:
text2 = hindi_tokenizer.sequences_to_texts([[np.argmax(p)] for p in pred])
res.append("".join(text2))
return " ".join(res)
demo = gr.Interface(fn=generate_text,
inputs="text",
outputs="text",
examples=[['Agra'],['Namaste'],['Shadab Sayeed'],['Mumbai']])
demo.launch()