from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer from PIL import Image import requests import torch from threading import Thread import gradio as gr from gradio import FileData import time import spaces ckpt = "mlx-community/Llama-3.2-11B-Vision-Instruct-abliterated" model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda") processor = AutoProcessor.from_pretrained(ckpt) @spaces.GPU def bot_streaming(message, history, max_new_tokens=250): txt = message["text"] ext_buffer = f"{txt}" messages= [] images = [] for i, msg in enumerate(history): if isinstance(msg[0], tuple): messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]}) images.append(Image.open(msg[0][0]).convert("RGB")) elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): # messages are already handled pass elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}) # add current message if len(message["files"]) == 1: if isinstance(message["files"][0], str): # examples image = Image.open(message["files"][0]).convert("RGB") else: # regular input image = Image.open(message["files"][0]["path"]).convert("RGB") images.append(image) messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]}) else: messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) texts = processor.apply_chat_template(messages, add_generation_prompt=True) if images == []: inputs = processor(text=texts, return_tensors="pt").to("cuda") else: inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer time.sleep(0.01) yield buffer demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama (Abliterated)", examples=[ [{"text": "Which era does this piece belong to? Give sordid details about the era.", "files":["./examples/rococo.jpg"]}, 200], [{"text": "Where do the droughts happen according to this diagram? How many people die annually?", "files":["./examples/weather_events.png"]}, 250], [{"text": "What happens when you take out white stuff from a round cylinder from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250], [{"text": "How long does it take from human conception date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250], [{"text": "Where to find this phallic monument? Can you give me other adult entertainment recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250], ], textbox=gr.MultimodalTextbox(), additional_inputs = [gr.Slider( minimum=10, maximum=500, value=250, step=10, label="Maximum number of new tokens to generate", ) ], cache_examples=False, description="Try Multimodal Llama (Abliterated) by Mlx with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ", stop_btn="Stop Generation", fill_height=True, multimodal=True) demo.launch(debug=True)