santoshNA commited on
Commit
4ae2990
·
1 Parent(s): 18081fb

app file added

Browse files
Files changed (1) hide show
  1. app.py +80 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import find_dotenv, load_dotenv
2
+ from transformers import pipeline
3
+ from langchain import PromptTemplate, LLMChain, OpenAI
4
+ import requests
5
+ import os
6
+ import streamlit as st
7
+
8
+ load_dotenv(find_dotenv())
9
+ HF_API_KEY=os.getenv("HF_API_KEY")
10
+
11
+ # img2text
12
+ def img2text(url):
13
+ image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
14
+ text = image_to_text_model(url)[0]["generated_text"]
15
+
16
+ print(text)
17
+ return text
18
+
19
+
20
+ # Describe it using LLM
21
+ def generate_description(caption):
22
+ template = """
23
+ You are a story teller;
24
+ You can generate a short story based on a simple narrative, the story should be no more than 30 words;
25
+ CONTEXT: {caption}
26
+ STORY;
27
+ """
28
+
29
+ prompt = PromptTemplate(template=template, input_variables=["caption"])
30
+
31
+ desc_llm = LLMChain(llm=OpenAI(model_name="gpt-4", temperature=1), prompt=prompt, verbose=True)
32
+ description = desc_llm.predict(caption=caption).replace('"', '')
33
+
34
+ print(description)
35
+ return description
36
+
37
+
38
+
39
+ # text to speech
40
+ def text2speech(message):
41
+ API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
42
+ headers = {"Authorization": f"Bearer {HF_API_KEY}"}
43
+ payload = {
44
+ "inputs": message
45
+ }
46
+
47
+ response = requests.post(API_URL, headers=headers, json=payload)
48
+ with open('audio.flac', 'wb') as file:
49
+ file.write(response.content)
50
+
51
+
52
+ def main():
53
+ st.set_page_config(page_title="image-to-caption-to-summary", page_icon="😊")
54
+ st.header("Image to caption to summary")
55
+ uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg'])
56
+
57
+ if uploaded_file is not None:
58
+ print(uploaded_file)
59
+ bytes_data = uploaded_file.getvalue()
60
+ with open(uploaded_file.name, "wb") as file:
61
+ file.write(bytes_data)
62
+
63
+ st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
64
+
65
+ st.text('Processing img2text...')
66
+ caption = img2text(uploaded_file.name)
67
+ with st.expander("caption"):
68
+ st.write(caption)
69
+
70
+ st.text('Generating description of given image...')
71
+ description = generate_description(caption)
72
+ with st.expander("Description"):
73
+ st.write(story)
74
+
75
+ st.text('Processing text2speech...')
76
+ text2speech(story)
77
+ st.audio("audio.flac")
78
+
79
+ if __name__ == '__main__':
80
+ main()