Spaces:
Sleeping
Sleeping
File size: 1,148 Bytes
b405fea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Define the input schema
class ModelInput(BaseModel):
prompt: str
max_new_tokens: int = 50 # Optional: Defaults to 50 tokens
# Initialize FastAPI app
app = FastAPI()
# Load your model and tokenizer
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs" # Update with your model directory
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# Initialize the pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
@app.post("/generate")
def generate_text(input: ModelInput):
try:
result = generator(
input.prompt,
max_new_tokens=input.max_new_tokens,
return_full_text=False,
)
return {"generated_text": result[0]["generated_text"]}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
def root():
return {"message": "Welcome to the Hugging Face Model API!"}
|