Chat / app.py
khurrameycon's picture
Update app.py
ad93aea verified
raw
history blame
2.94 kB
# app.py
import os
import logging
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from typing import Optional
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="LLM Chat API",
description="API for getting chat responses from Llama model",
version="1.0.0"
)
class ChatRequest(BaseModel):
text: str
class ChatResponse(BaseModel):
response: str
status: str
def llm_chat_response(text: str) -> str:
try:
HF_TOKEN = os.getenv("HF_TOKEN")
logger.info("Checking HF_TOKEN...")
if not HF_TOKEN:
logger.error("HF_TOKEN not found in environment variables")
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
logger.info("Initializing InferenceClient...")
client = InferenceClient(
provider="sambanova",
api_key=HF_TOKEN
)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": text + " describe in one line only"
}
]
}
]
logger.info("Sending request to model...")
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
return completion.choices[0].message['content']
except Exception as e:
logger.error(f"Error in llm_chat_response: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
try:
logger.info(f"Received chat request with text: {request.text}")
response = llm_chat_response(request.text)
return ChatResponse(response=response, status="success")
except HTTPException as he:
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
raise he
except Exception as e:
logger.error(f"Unexpected error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."}
@app.exception_handler(404)
async def not_found_handler(request, exc):
return JSONResponse(
status_code=404,
content={"error": "Endpoint not found. Please use POST /chat for queries."}
)
@app.exception_handler(405)
async def method_not_allowed_handler(request, exc):
return JSONResponse(
status_code=405,
content={"error": "Method not allowed. Please check the API documentation."}
)