Chat / app.py
khurrameycon's picture
Update app.py
0cef40a verified
raw
history blame
7.36 kB
# # app.py
# import os
# import logging
# from fastapi import FastAPI, HTTPException
# from fastapi.responses import JSONResponse
# from pydantic import BaseModel
# from huggingface_hub import InferenceClient
# from typing import Optional
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Initialize FastAPI app
# app = FastAPI(
# title="LLM Chat API",
# description="API for getting chat responses from Llama model",
# version="1.0.0"
# )
# class ChatRequest(BaseModel):
# text: str
# class ChatResponse(BaseModel):
# response: str
# status: str
# def llm_chat_response(text: str) -> str:
# try:
# HF_TOKEN = os.getenv("HF_TOKEN")
# logger.info("Checking HF_TOKEN...")
# if not HF_TOKEN:
# logger.error("HF_TOKEN not found in environment variables")
# raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
# logger.info("Initializing InferenceClient...")
# client = InferenceClient(
# provider="sambanova",
# api_key=HF_TOKEN
# )
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "text",
# "text": text + " describe in one line only"
# }
# ]
# }
# ]
# logger.info("Sending request to model...")
# completion = client.chat.completions.create(
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
# messages=messages,
# max_tokens=500
# )
# return completion.choices[0].message['content']
# except Exception as e:
# logger.error(f"Error in llm_chat_response: {str(e)}")
# raise HTTPException(status_code=500, detail=str(e))
# @app.post("/chat", response_model=ChatResponse)
# async def chat(request: ChatRequest):
# try:
# logger.info(f"Received chat request with text: {request.text}")
# response = llm_chat_response(request.text)
# return ChatResponse(response=response, status="success")
# except HTTPException as he:
# logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
# raise he
# except Exception as e:
# logger.error(f"Unexpected error in chat endpoint: {str(e)}")
# raise HTTPException(status_code=500, detail=str(e))
# @app.get("/")
# async def root():
# return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."}
# @app.exception_handler(404)
# async def not_found_handler(request, exc):
# return JSONResponse(
# status_code=404,
# content={"error": "Endpoint not found. Please use POST /chat for queries."}
# )
# @app.exception_handler(405)
# async def method_not_allowed_handler(request, exc):
# return JSONResponse(
# status_code=405,
# content={"error": "Method not allowed. Please check the API documentation."}
# )
# app.py
import os
import logging
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from typing import Optional
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="LLM Chat API",
description="API for getting chat responses from Llama model with image support",
version="1.1.0"
)
class ChatRequest(BaseModel):
text: str
image_url: Optional[str] = None
class ChatResponse(BaseModel):
response: str
status: str
def llm_chat_response(text: str, image_url: Optional[str] = None) -> str:
try:
HF_TOKEN = os.getenv("HF_TOKEN")
logger.info("Checking HF_TOKEN...")
if not HF_TOKEN:
logger.error("HF_TOKEN not found in environment variables")
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
logger.info("Initializing InferenceClient...")
client = InferenceClient(
provider="sambanova",
api_key=HF_TOKEN
)
# Prepare content list for the message
content = [
{
"type": "text",
"text": text + " describe in one line only"
}
]
# Add image to content if provided
if image_url:
logger.info(f"Adding image URL to request: {image_url}")
content.append({
"type": "image_url",
"image_url": {
"url": image_url
}
})
messages = [
{
"role": "user",
"content": content
}
]
logger.info("Sending request to model...")
logger.info(f"Request payload: {messages}")
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
logger.info(f"Response received: {completion}")
# Check the structure of the response and extract content
if hasattr(completion, 'choices') and len(completion.choices) > 0:
message = completion.choices[0].message
# Handle different response formats
if isinstance(message, dict) and 'content' in message:
return message['content']
elif hasattr(message, 'content'):
return message.content
else:
logger.error(f"Unexpected message format: {message}")
return str(message)
else:
logger.error(f"Unexpected completion format: {completion}")
return str(completion)
except Exception as e:
logger.error(f"Error in llm_chat_response: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
try:
logger.info(f"Received chat request with text: {request.text}")
if request.image_url:
logger.info(f"Image URL included: {request.image_url}")
response = llm_chat_response(request.text, request.image_url)
return ChatResponse(response=response, status="success")
except HTTPException as he:
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
raise he
except Exception as e:
logger.error(f"Unexpected error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to the LLM Chat API with image support. Use POST /chat endpoint to get responses."}
@app.exception_handler(404)
async def not_found_handler(request, exc):
return JSONResponse(
status_code=404,
content={"error": "Endpoint not found. Please use POST /chat for queries."}
)
@app.exception_handler(405)
async def method_not_allowed_handler(request, exc):
return JSONResponse(
status_code=405,
content={"error": "Method not allowed. Please check the API documentation."}
)