Spaces:
Running
Running
File size: 1,782 Bytes
cb0bf83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# app.py
import os
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from typing import Optional
# Initialize FastAPI app
app = FastAPI(
title="LLM Chat API",
description="API for getting chat responses from Llama model",
version="1.0.0"
)
class ChatRequest(BaseModel):
text: str
class ChatResponse(BaseModel):
response: str
def llm_chat_response(text: str) -> str:
try:
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
client = InferenceClient(api_key=HF_TOKEN)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": text + str('describe in one line only')
}
]
}
]
response_from_llama = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
return response_from_llama.choices[0].message['content']
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
try:
response = llm_chat_response(request.text)
return ChatResponse(response=response)
except HTTPException as he:
raise he
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."} |