import streamlit as st from models import demo # Import the demo object from models.py # --- Streamlit App Configuration --- st.set_page_config( page_title="DeepSeek Chatbot", page_icon="🤖", layout="wide" ) # --- App Title and Description --- st.title("DeepSeek Chatbot") st.markdown(""" Created by [ruslanmv.com](https://ruslanmv.com/) This is a demo of different DeepSeek models. Select a model, type your message, and click "Submit". You can also adjust optional parameters like system message, max new tokens, temperature, and top-p. """) # --- Sidebar for Model Selection and Parameters --- with st.sidebar: st.header("Options") model_choice = st.radio( "Choose a Model", options=["DeepSeek-R1-Distill-Qwen-32B", "DeepSeek-R1", "DeepSeek-R1-Zero"], index=1 # Default to "DeepSeek-R1" ) with st.expander("Optional Parameters", expanded=False): system_message = st.text_area( "System Message", value="You are a friendly Chatbot created by ruslanmv.com", height=100 ) max_new_tokens = st.slider( "Max New Tokens", min_value=1, max_value=4000, value=200 ) temperature = st.slider( "Temperature", min_value=0.10, max_value=4.00, value=0.70 ) top_p = st.slider( "Top-p (nucleus sampling)", min_value=0.10, max_value=1.00, value=0.90 ) # --- Chatbot Function --- def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p): # Create payload for the model payload = { "messages": [{"role": "user", "content": input_text}], "system": system_message, "max_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p } # Run inference using the selected model try: response = demo(payload) # Use the demo object directly if isinstance(response, dict) and "choices" in response: assistant_response = response["choices"][0]["message"]["content"] else: assistant_response = "Unexpected model response format." except Exception as e: assistant_response = f"Error: {str(e)}" # Append user and assistant messages to history history.append((input_text, assistant_response)) return history # --- Chat History Management --- if "chat_history" not in st.session_state: st.session_state.chat_history = [] # --- Chat Interface --- st.header("Chat with DeepSeek") # Display chat history for user_msg, assistant_msg in st.session_state.chat_history: with st.chat_message("user"): st.write(user_msg) with st.chat_message("assistant"): st.write(assistant_msg) # Input for new message input_text = st.chat_input("Type your message here...") # Handle new message submission if input_text: # Update chat history st.session_state.chat_history = chatbot( input_text, st.session_state.chat_history, model_choice, system_message, max_new_tokens, temperature, top_p ) # Rerun the app to display the updated chat history st.rerun()