import streamlit as st import requests import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Page configuration st.set_page_config( page_title="DeepSeek Chatbot - ruslanmv.com", page_icon="🤖", layout="centered" ) # Initialize session state for chat history if "messages" not in st.session_state: st.session_state.messages = [] # Sidebar configuration with st.sidebar: st.header("Model Configuration") st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)") # Dropdown to select model model_options = [ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", ] selected_model = st.selectbox("Select Model", model_options, index=0) system_message = st.text_area( "System Message", value="You are a friendly chatbot created by ruslanmv.com. Provide clear, accurate, and brief answers. Keep responses polite, engaging, and to the point. If unsure, politely suggest alternatives.", height=100 ) max_tokens = st.slider( "Max Tokens", 10, 4000, 100 ) temperature = st.slider( "Temperature", 0.1, 4.0, 0.3 ) top_p = st.slider( "Top-p", 0.1, 1.0, 0.6 ) # Function to query the Hugging Face API def query(payload, api_url): headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"} logger.info(f"Sending request to {api_url} with payload: {payload}") response = requests.post(api_url, headers=headers, json=payload) logger.info(f"Received response: {response.status_code}, {response.text}") try: return response.json() except requests.exceptions.JSONDecodeError: logger.error(f"Failed to decode JSON response: {response.text}") return None # Chat interface st.title("🤖 DeepSeek Chatbot") st.caption("Powered by Hugging Face Inference API - Configure in sidebar") # Display chat history for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Handle input if prompt := st.chat_input("Type your message..."): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) try: with st.spinner("Generating response..."): # Prepare the payload for the API # Combine system message and user input into a single prompt full_prompt = f"{system_message}\n\nUser: {prompt}\nAssistant:" payload = { "inputs": full_prompt, "parameters": { "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "return_full_text": False } } # Dynamically construct the API URL based on the selected model api_url = f"https://api-inference.huggingface.co/models/{selected_model}" logger.info(f"Selected model: {selected_model}, API URL: {api_url}") print("payload",payload) # Query the Hugging Face API using the selected model output = query(payload, api_url) # Handle API response if output is not None and isinstance(output, list) and len(output) > 0: if 'generated_text' in output[0]: assistant_response = output[0]['generated_text'] logger.info(f"Generated response: {assistant_response}") with st.chat_message("assistant"): st.markdown(assistant_response) st.session_state.messages.append({"role": "assistant", "content": assistant_response}) else: logger.error(f"Unexpected API response structure: {output}") st.error("Error: Unexpected response from the model. Please try again.") else: logger.error(f"Empty or invalid API response: {output}") st.error("Error: Unable to generate a response. Please check the model and try again.") except Exception as e: logger.error(f"Application Error: {str(e)}", exc_info=True) st.error(f"Application Error: {str(e)}")