DeepSeek-R1-Chatbot / app-v3-working-dup.py
ruslanmv's picture
Create app-v3-working-dup.py
be8fcde verified
import streamlit as st
import requests
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="πŸ€–",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar configuration
with st.sidebar:
st.header("Model Configuration")
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
# Dropdown to select model
model_options = [
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
]
selected_model = st.selectbox("Select Model", model_options, index=0)
system_message = st.text_area(
"System Message",
value="You are a friendly chatbot created by ruslanmv.com. Provide clear, accurate, and brief answers. Keep responses polite, engaging, and to the point. If unsure, politely suggest alternatives.",
height=100
)
max_tokens = st.slider(
"Max Tokens",
10, 4000, 100
)
temperature = st.slider(
"Temperature",
0.1, 4.0, 0.3
)
top_p = st.slider(
"Top-p",
0.1, 1.0, 0.6
)
# Function to query the Hugging Face API
def query(payload, api_url):
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
logger.info(f"Sending request to {api_url} with payload: {payload}")
response = requests.post(api_url, headers=headers, json=payload)
logger.info(f"Received response: {response.status_code}, {response.text}")
try:
return response.json()
except requests.exceptions.JSONDecodeError:
logger.error(f"Failed to decode JSON response: {response.text}")
return None
# Chat interface
st.title("πŸ€– DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle input
if prompt := st.chat_input("Type your message..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
try:
with st.spinner("Generating response..."):
# Prepare the payload for the API
# Combine system message and user input into a single prompt
full_prompt = f"{system_message}\n\nUser: {prompt}\nAssistant:"
payload = {
"inputs": full_prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
}
}
# Dynamically construct the API URL based on the selected model
api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
logger.info(f"Selected model: {selected_model}, API URL: {api_url}")
print("payload",payload)
# Query the Hugging Face API using the selected model
output = query(payload, api_url)
# Handle API response
if output is not None and isinstance(output, list) and len(output) > 0:
if 'generated_text' in output[0]:
assistant_response = output[0]['generated_text']
logger.info(f"Generated response: {assistant_response}")
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
else:
logger.error(f"Unexpected API response structure: {output}")
st.error("Error: Unexpected response from the model. Please try again.")
else:
logger.error(f"Empty or invalid API response: {output}")
st.error("Error: Unable to generate a response. Please check the model and try again.")
except Exception as e:
logger.error(f"Application Error: {str(e)}", exc_info=True)
st.error(f"Application Error: {str(e)}")