Spaces:
Running
Running
import streamlit as st | |
import requests | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Page configuration | |
st.set_page_config( | |
page_title="DeepSeek Chatbot - ruslanmv.com", | |
page_icon="π€", | |
layout="centered" | |
) | |
# Initialize session state for chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Sidebar configuration | |
with st.sidebar: | |
st.header("Model Configuration") | |
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)") | |
# Dropdown to select model | |
model_options = [ | |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", | |
] | |
selected_model = st.selectbox("Select Model", model_options, index=0) | |
system_message = st.text_area( | |
"System Message", | |
value="You are a friendly chatbot created by ruslanmv.com. Provide clear, accurate, and brief answers. Keep responses polite, engaging, and to the point. If unsure, politely suggest alternatives.", | |
height=100 | |
) | |
max_tokens = st.slider( | |
"Max Tokens", | |
10, 4000, 100 | |
) | |
temperature = st.slider( | |
"Temperature", | |
0.1, 4.0, 0.3 | |
) | |
top_p = st.slider( | |
"Top-p", | |
0.1, 1.0, 0.6 | |
) | |
# Function to query the Hugging Face API | |
def query(payload, api_url): | |
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"} | |
logger.info(f"Sending request to {api_url} with payload: {payload}") | |
response = requests.post(api_url, headers=headers, json=payload) | |
logger.info(f"Received response: {response.status_code}, {response.text}") | |
try: | |
return response.json() | |
except requests.exceptions.JSONDecodeError: | |
logger.error(f"Failed to decode JSON response: {response.text}") | |
return None | |
# Chat interface | |
st.title("π€ DeepSeek Chatbot") | |
st.caption("Powered by Hugging Face Inference API - Configure in sidebar") | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Handle input | |
if prompt := st.chat_input("Type your message..."): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
try: | |
with st.spinner("Generating response..."): | |
# Prepare the payload for the API | |
# Combine system message and user input into a single prompt | |
full_prompt = f"{system_message}\n\nUser: {prompt}\nAssistant:" | |
payload = { | |
"inputs": full_prompt, | |
"parameters": { | |
"max_new_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"return_full_text": False | |
} | |
} | |
# Dynamically construct the API URL based on the selected model | |
api_url = f"https://api-inference.huggingface.co/models/{selected_model}" | |
logger.info(f"Selected model: {selected_model}, API URL: {api_url}") | |
print("payload",payload) | |
# Query the Hugging Face API using the selected model | |
output = query(payload, api_url) | |
# Handle API response | |
if output is not None and isinstance(output, list) and len(output) > 0: | |
if 'generated_text' in output[0]: | |
assistant_response = output[0]['generated_text'] | |
logger.info(f"Generated response: {assistant_response}") | |
with st.chat_message("assistant"): | |
st.markdown(assistant_response) | |
st.session_state.messages.append({"role": "assistant", "content": assistant_response}) | |
else: | |
logger.error(f"Unexpected API response structure: {output}") | |
st.error("Error: Unexpected response from the model. Please try again.") | |
else: | |
logger.error(f"Empty or invalid API response: {output}") | |
st.error("Error: Unable to generate a response. Please check the model and try again.") | |
except Exception as e: | |
logger.error(f"Application Error: {str(e)}", exc_info=True) | |
st.error(f"Application Error: {str(e)}") |