DeepSeek-R1-Chatbot / app-work-only-1.py
ruslanmv's picture
Update app-work-only-1.py
155e743 verified
raw
history blame
6.38 kB
import streamlit as st
import requests
# Function to query the Hugging Face API
def query(payload, api_url):
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
response = requests.post(api_url, headers=headers, json=payload)
return response.json()
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="πŸ€–",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
if "selected_model" not in st.session_state:
st.session_state.selected_model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
# Sidebar configuration
with st.sidebar:
st.header("Model Configuration")
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
# Dropdown to select model
model_options = [
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1",
"deepseek-ai/DeepSeek-R1-Zero"
]
selected_model = st.selectbox("Select Model", model_options, index=model_options.index(st.session_state.selected_model))
st.session_state.selected_model = selected_model
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
height=100
)
max_tokens = st.slider(
"Max Tokens",
1, 4000, 512
)
temperature = st.slider(
"Temperature",
0.1, 4.0, 0.7
)
top_p = st.slider(
"Top-p",
0.1, 1.0, 0.9
)
# Chat interface
st.title("πŸ€– DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle input
if prompt := st.chat_input("Type your message..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
try:
with st.spinner("Generating response..."):
# Prepare the payload for the API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
}
}
# Query the Hugging Face API using the selected model
api_url = f"https://api-inference.huggingface.co/models/{st.session_state.selected_model}"
output = query(payload, api_url)
# Handle API response
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
assistant_response = output[0]['generated_text']
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
else:
st.error("Error: Unable to generate a response. Please try again.")
except Exception as e:
st.error(f"Application Error: {str(e)}")
'''
import streamlit as st
import requests
# Hugging Face API URL (default model)
API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
# Function to query the Hugging Face API
def query(payload, api_url):
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
response = requests.post(api_url, headers=headers, json=payload)
return response.json()
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="πŸ€–",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar configuration
with st.sidebar:
st.header("Model Configuration")
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
# Dropdown to select model
model_options = [
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1",
"deepseek-ai/DeepSeek-R1-Zero"
]
selected_model = st.selectbox("Select Model", model_options, index=0)
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
height=100
)
max_tokens = st.slider(
"Max Tokens",
1, 4000, 512
)
temperature = st.slider(
"Temperature",
0.1, 4.0, 0.7
)
top_p = st.slider(
"Top-p",
0.1, 1.0, 0.9
)
# Chat interface
st.title("πŸ€– DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle input
if prompt := st.chat_input("Type your message..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
try:
with st.spinner("Generating response..."):
# Prepare the payload for the API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
}
}
# Query the Hugging Face API using the selected model
output = query(payload, f"https://api-inference.huggingface.co/models/{selected_model}")
# Handle API response
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
assistant_response = output[0]['generated_text']
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
else:
st.error("Error: Unable to generate a response. Please try again.")
except Exception as e:
st.error(f"Application Error: {str(e)}")
'''