AI-Audit / app.py
rstallman's picture
Update app.py
2e62d47
import requests
import json
import gradio as gr
import pdfplumber
import pandas as pd
from datetime import datetime
from google.oauth2.service_account import Credentials
from cnocr import CnOcr
import gspread
from sentence_transformers import SentenceTransformer, models, util
# Load credentials for Google Sheets
credentials = Credentials.from_service_account_file("credentials.json", scopes=["https://www.googleapis.com/auth/spreadsheets"])
client = gspread.authorize(credentials)
sheet = client.open_by_url("https://docs.google.com/spreadsheets/d/16H4M-8hHdOhI68vDIsDFT6T2xcGEvm0A7o5uFlmrzrQ/edit?usp=sharing").sheet1
# Initialize models and utilities
word_embedding_model = models.Transformer('sentence-transformers/all-MiniLM-L6-v2', do_lower_case=True)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls')
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
ocr = CnOcr()
# API URLs and headers
chat_url = 'https://Raghav001-API.hf.space/chatpdf'
chat_emd = 'https://Raghav001-API.hf.space/embedd'
headers = {'Content-Type': 'application/json'}
# Global variables
history_max_len = 500
all_max_len = 3000
bot = []
def record_to_sheet(timestamp, user_input, answer):
row = [timestamp, user_input, answer]
sheet.append_row(row)
def doc_emb(doc):
texts = doc.split('\n')
emb_list = embedder.encode(texts)
print('emb_list', emb_list)
print('\n'.join(texts))
gr.Textbox.update(value="")
return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(value="""success! Let's talk"""), gr.Chatbot.update(visible=True)
def get_response(msg, bot, doc_text_list, doc_embeddings):
gr.Textbox.update(value="")
now_len = len(msg)
req_json = {'question': msg}
his_bg = -1
for i in range(len(bot) - 1, -1, -1):
if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len:
break
now_len += len(bot[i][0]) + len(bot[i][1])
his_bg = i
req_json['history'] = [] if his_bg == -1 else bot[his_bg:]
query_embedding = embedder.encode([msg])
cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])]
score_index.sort(key=lambda x: x[0], reverse=True)
print('score_index:\n', score_index)
print('doc_emb_state', doc_emb_state)
index_set, sub_doc_list = set(), []
for s_i in score_index:
doc = doc_text_list[s_i[1]]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1])
now_len += len(doc)
# Maybe the paragraph is truncated wrong, so add the upper and lower paragraphs
if s_i[1] > 0 and s_i[1] - 1 not in index_set:
doc = doc_text_list[s_i[1]-1]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1]-1)
now_len += len(doc)
if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set:
doc = doc_text_list[s_i[1]+1]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1]+1)
now_len += len(doc)
index_list = list(index_set)
index_list.sort()
for i in index_list:
sub_doc_list.append(doc_text_list[i])
req_json['doc'] = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list)
data = {"content": json.dumps(req_json)}
print('data:\n', req_json)
result = requests.post(url=chat_url, data=json.dumps(data), headers=headers)
res = result.json()['content']
bot.append([msg, res])
record_to_sheet(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), msg, res)
return bot[max(0, len(bot) - 3):]
def up_file(fls):
doc_text_list = []
names = [str(i.name) for i in fls]
pdf = []
docs = []
pptx = []
for i in names:
if i[-3:] == "pdf":
pdf.append(i)
elif i[-4:] == "docx":
docs.append(i)
else:
pptx.append(i)
# Pdf Extraction
for idx, file in enumerate(pdf):
with pdfplumber.open(file) as pdf:
for i in range(len(pdf.pages)):
page = pdf.pages[i]
res_list = page.extract_text().split('\n')[:-1]
for j in range(len(page.images)):
img = page.images[j]
file_name = f"{str(time.time())}-{str(i)}-{str(j)}.png"
with open(file_name, mode='wb') as f:
f.write(img['stream'].get_data())
try:
res = ocr.ocr(file_name)
except Exception as e:
res = []
if len(res) > 0:
res_list.append(' '.join([re['text'] for re in res]))
tables = page.extract_tables()
for table in tables:
df = pd.DataFrame(table[1:], columns=table[0])
try:
records = json.loads(df.to_json(orient="records"))
for rec in records:
res_list.append(json.dumps(rec))
except Exception as e:
res_list.append(str(df))
doc_text_list += res_list
# PPTX Extraction
for i in pptx:
loader = UnstructuredPowerPointLoader(i)
data = loader.load()
doc_text_list.append(data)
# Doc Extraction
for i in docs:
loader = UnstructuredWordDocumentLoader(i)
data = loader.load()
doc_text_list.append(data)
doc_text_list = [str(text).strip() for text in doc_text_list if len(str(text).strip()) > 0]
return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update(visible=True), gr.Markdown.update(value="Processing")
def launch_interface():
with gr.Interface(
fn=up_file,
inputs="file",
outputs=["text", "button", "markdown"],
title="Document Chatbot",
description="Upload a PDF contract to chat with the AI lawyer."
) as interface:
interface.launch()
if __name__ == "__main__":
launch_interface()