ritvik77's picture
Create app.py
9da8c23 verified
raw
history blame
4.29 kB
from typing import TypedDict, Annotated, List, Union
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
import requests
import gradio as gr
class PlannerState(TypedDict):
messages: Annotated[List[Union[HumanMessage, AIMessage]], "The messages in the conversation"]
city: str
interests: List[str]
itinerary: str
# Initialize the LLM with better engagement
llm = ChatGroq(
temperature=0.7,
groq_api_key="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",
model_name="llama-3.3-70b-versatile"
)
# Prompt for generating an itinerary
itinerary_prompt = ChatPromptTemplate.from_messages([
("system", "You are a smart travel agent who creates engaging, fun, and optimized day trip itineraries for {city}. \
Tailor recommendations based on the user's interests: {interests}. \
Include hidden gems, famous spots, and local cuisine. Keep it structured, with timestamps."),
("human", "Plan my perfect day trip!")
])
# Prompt for generating a fun fact
fun_fact_prompt = ChatPromptTemplate.from_messages([
("system", "You are a knowledgeable travel guide. Share an interesting and unique fun fact about {city} that most travelers don’t know."),
("human", "Tell me a fun fact about {city}!")
])
# Function to collect city input
def input_city(city: str, state: PlannerState) -> PlannerState:
return {
**state,
"city": city,
"messages": state["messages"] + [HumanMessage(content=f"City: {city}")]
}
# Function to collect interests input
def input_interests(interests: str, state: PlannerState) -> PlannerState:
interest_list = [interest.strip() for interest in interests.split(",")]
return {
**state,
"interests": interest_list,
"messages": state["messages"] + [HumanMessage(content=f"Interests: {', '.join(interest_list)}")]
}
# Function to create the itinerary
def create_itinerary(state: PlannerState) -> str:
response = llm.invoke(itinerary_prompt.format_messages(city=state["city"], interests=', '.join(state["interests"])))
return response.content
# Function to fetch real-time weather data
def get_weather(city: str) -> str:
api_key = "b787841c42e84b32b70235141251102"
url = f"http://api.weatherapi.com/v1/current.json?key={api_key}&q={city}&aqi=no"
try:
response = requests.get(url)
data = response.json()
if "current" in data:
weather_desc = data["current"]["condition"]["text"]
temp = data["current"]["temp_c"]
return f"Current weather in {city}: {weather_desc}, {temp}°C"
else:
return "Weather data unavailable."
except:
return "Error fetching weather."
# Function to generate a fun fact about the city
def fun_fact(city: str) -> str:
response = llm.invoke(fun_fact_prompt.format_messages(city=city))
return response.content
# Gradio function to generate travel plan
def travel_planner(city: str, interests: str):
# Initialize state
state = {
"messages": [],
"city": "",
"interests": [],
"itinerary": "",
}
# Update state with user inputs
state = input_city(city, state)
state = input_interests(interests, state)
# Generate itinerary, weather, and fun fact
itinerary = create_itinerary(state)
weather = get_weather(city)
fact = fun_fact(city)
return itinerary, weather, fact
# Build the Gradio interface with enhanced UI
interface = gr.Interface(
fn=travel_planner,
inputs=[
gr.Textbox(label="Enter the city for your trip", placeholder="e.g., Paris, Tokyo, New York"),
gr.Textbox(label="Enter your interests (comma-separated)", placeholder="e.g., history, food, adventure"),
],
outputs=[
gr.Textbox(label="Generated Itinerary", interactive=False),
gr.Textbox(label="Current Weather", interactive=False),
gr.Textbox(label="Fun Fact", interactive=False)
],
theme="soft",
title="✈️ AI Travel Planner",
description="Plan your next adventure! Get a custom itinerary, weather forecast, and a fun fact!",
live=True,
)
# Launch the Gradio application
interface.launch()