File size: 25,984 Bytes
80fbc47 655ec99 80fbc47 655ec99 80fbc47 df3171c 80fbc47 df3171c 80fbc47 bf58560 80fbc47 aca227e 80fbc47 b686fb2 80fbc47 8efc289 80fbc47 cea9bb3 80fbc47 cea9bb3 80fbc47 df3171c 80fbc47 cea9bb3 80fbc47 cea9bb3 80fbc47 df3171c 80fbc47 cea9bb3 80fbc47 cea9bb3 80fbc47 df3171c 80fbc47 cea9bb3 80fbc47 39ea138 80fbc47 dc0a102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import os
import json
import requests
import streamlit as st
from google.oauth2 import service_account
from json_repair import repair_json
from youtube_transcript_api import YouTubeTranscriptApi
import dto.user_story as us
import dto.release_notes as rs
import dto.requirement_gathering as rq
import prompts as pt
from langchain_community.llms import HuggingFaceEndpoint
from langchain_groq import ChatGroq
from langchain_cohere import ChatCohere
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_vertexai import ChatVertexAI
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.document_loaders import PyPDFLoader
from langchain.output_parsers import PydanticOutputParser
# Caching LLM response
if "lv_response" not in st.session_state:
lv_response = None
st.session_state.lv_response = lv_response
else:
lv_response = st.session_state.lv_response
# Caching Extracted Text
if "lv_extracted_text" not in st.session_state:
lv_extracted_text = ""
st.session_state.lv_extracted_text = lv_extracted_text
else:
lv_extracted_text = st.session_state.lv_extracted_text
# Caching LLM Model
if "lv_model_session" not in st.session_state:
st.session_state.lv_model_session = None
# Display user Error, Warning or Success Message
def fn_display_user_messages(lv_extracted_text, lv_type, mv_processing_message):
"""Display user Info, Error, Warning or Success Messages"""
if lv_type == "Success":
with mv_processing_message.container():
st.success(lv_extracted_text)
elif lv_type == "Error":
with mv_processing_message.container():
st.error(lv_extracted_text)
elif lv_type == "Warning":
with mv_processing_message.container():
st.warning(lv_extracted_text)
else:
with mv_processing_message.container():
st.info(lv_extracted_text)
# Function to set proxy
def fn_set_proxy(ui_proxy_url, ui_no_proxy_url):
"""Configure http and https proxy programmatically"""
os.environ['HTTP_PROXY'] = ui_proxy_url
os.environ['HTTPS_PROXY'] = ui_proxy_url
os.environ['NO_PROXY'] = ui_no_proxy_url
print("=== Proxy SET ===")
print("HTTP_PROXY:", os.environ.get('HTTP_PROXY'))
print("HTTPS_PROXY:", os.environ.get('HTTPS_PROXY'))
print("NO_PROXY:", os.environ.get('NO_PROXY'))
print("=================")
# Function to convert Website URL content into text
def fn_scrape_website(ui_grounding_url):
"""Function to convert Website URL content into text"""
lv_html_loader = WebBaseLoader(ui_grounding_url)
lv_html = lv_html_loader.load()
return lv_html
# Function to convert PDF content into Documents
def fn_scraper_pdf(ui_grounding_pdf):
"""Function to convert PDF content into text"""
# -- Saving file
lv_temp_file_path = os.path.join("pdf-data",ui_grounding_pdf.name)
if not os.path.exists(lv_temp_file_path):
with open(lv_temp_file_path,"wb") as lv_file:
lv_file.write(ui_grounding_pdf.getbuffer())
# -- Extracting Data
lv_pdf_loader = PyPDFLoader(lv_temp_file_path)
lv_pdf_content = lv_pdf_loader.load()
return lv_pdf_content
# Function to search internet for information
def fn_search_web(ui_search_web_input):
"""Search internet for information"""
lv_search_run = DuckDuckGoSearchRun()
lv_result = lv_search_run.run(ui_search_web_input)
return lv_result
# Function to extract YouTube Video Transcript
def fn_you_tube_video_transcript(ui_youtube_url,ui_processing_message):
"""Extract YouTube Video Transcript"""
fn_display_user_messages("Generating Youtube Transcript","Info", ui_processing_message)
try:
lv_youtube_transcript = YouTubeTranscriptApi.get_transcript(ui_youtube_url)
lv_response = ' '.join([item['text'] for item in lv_youtube_transcript])
fn_display_user_messages("Successfully generated Youtube transcript","Success", ui_processing_message)
return lv_response
except Exception as error:
print('Error Generating Youtube Transcript', error)
fn_display_user_messages("Error Generating Youtube Transcript","Error", ui_processing_message)
raise error
# Function to unset proxy
def fn_unset_proxy():
"""Unset http and https proxy"""
os.environ.pop('HTTP_PROXY', None)
os.environ.pop('HTTPS_PROXY', None)
os.environ.pop('NO_PROXY', None)
print("=== Proxy UNSET ===")
print("HTTP_PROXY:", os.environ.get('HTTP_PROXY'))
print("HTTPS_PROXY:", os.environ.get('HTTPS_PROXY'))
print("NO_PROXY:", os.environ.get('NO_PROXY'))
print("===================")
# Create Chat LLM Instance
@st.cache_resource
def fn_create_chatllm(ui_llm_provider, ui_api_key, ui_model_details):
"""Create Chat LLM Instance"""
lv_model = None
try:
if(ui_llm_provider == 'Huggingface'):
lv_model = HuggingFaceEndpoint(
repo_id=ui_model_details,
temperature=1.0,
huggingfacehub_api_token=ui_api_key
)
elif(ui_llm_provider == 'Groq'):
lv_model = ChatGroq(
temperature=1.0,
model_name=ui_model_details
)
elif(ui_llm_provider == 'Cohere'):
lv_model = ChatCohere(
temperature=1.0,
model=ui_model_details
)
elif(ui_llm_provider == 'Google'):
lv_model = ChatGoogleGenerativeAI(
temperature=1.0,
model=ui_model_details,
max_output_tokens=1000000
)
elif(ui_llm_provider == 'OpenAI'):
lv_model = ChatOpenAI(
temperature=1.0,
model=ui_model_details
)
elif(ui_llm_provider == 'Google VertexAI'):
lv_api_key = json.loads(ui_api_key)
with open('key.json', 'w') as f:
json.dump(lv_api_key, f)
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'key.json'
g_creds = service_account.Credentials.from_service_account_info(lv_api_key)
lv_model = ChatVertexAI(
project=lv_api_key.get("project_id"),
temperature=1.0,
model=ui_model_details,
credentials=g_creds
)
print("Returning new model")
except Exception as e:
print("Error Configuring Model"+str(e))
return lv_model
# Generate Speech to Text
@st.cache_resource
def fn_generate_speech_to_text(ui_audio_bytes,ui_api_key):
"""Generate Speech to Text"""
lv_extracted_text = None
try:
lv_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
lv_headers = {
'Authorization': "Bearer "+ui_api_key,
'Content-Type': "audio/wav"
}
response = requests.request("POST", lv_url, data=ui_audio_bytes, headers=lv_headers)
lv_extracted_text = response.json().get('text')
print(lv_extracted_text)
return lv_extracted_text
except Exception as error:
print('Error Generating Speech to Text', error)
raise error
# Generate LLM response
def fn_chatllm_response(ui_llm_provider, lv_summarize_prompt_formatted, lv_model, lv_pydantic_object, ui_processing_message):
"""Generate LLM response"""
fn_display_user_messages("Generating LLM Response","Info", ui_processing_message)
lv_response = None
try:
if lv_pydantic_object:
lv_model = llm.with_structured_output(lv_pydantic_object)
if(ui_llm_provider == 'Google VertexAI' or ui_llm_provider=='Google' or ui_llm_provider=='OpenAI' or ui_llm_provider=='Groq' or ui_llm_provider=='Cohere'):
lv_response = lv_model.invoke(lv_summarize_prompt_formatted).content
else:
lv_response = lv_model.invoke(lv_summarize_prompt_formatted)
lv_response = str(lv_response).replace("```json","")
lv_response = lv_response.replace("```","")
fn_display_user_messages("Generated LLM Response","Success", ui_processing_message)
return lv_response
except Exception as error:
print('Error Generating LLM Response', error)
fn_display_user_messages("Error Generating LLM Response","Error", ui_processing_message)
raise error
# Function to convert user story JSON to Markdown
def fn_convert_user_story_json_to_markdown(lv_json):
"""Convert User Story JSON to Markdown"""
lv_markdown = ""
try:
# Convert the dictionary to Markdown format
lv_markdown = f"# {lv_json['title']}\n\n"
lv_markdown += f"**Role:** {lv_json['role']}\n\n"
lv_markdown += f"**Feature:** {lv_json['feature']}\n\n"
lv_markdown += f"**Benefit:** {lv_json['benefit']}\n\n"
lv_markdown += "## User Story Scenarios\n"
for lv_scenario in lv_json['user_story_scenarios']:
lv_markdown += f"### {lv_scenario['scenario_title']}\n\n"
lv_markdown += f"**Pre-conditions:** {lv_scenario['pre_conditions']}\n\n"
lv_markdown += f"**Action Details:** {lv_scenario['action_details']}\n\n"
lv_markdown += f"**Expected Outcome:** {lv_scenario['expected_outcome']}\n\n"
except Exception as e:
print("UserStory - Error converting JSON to Markdown",str(e))
return lv_markdown
# Function to convert release notes JSON to Markdown
def fn_convert_release_notes_json_to_markdown(lv_json):
"""Convert Release Notes JSON to Markdown"""
lv_markdown = ""
try:
# Convert the dictionary to Markdown format
lv_markdown = f"# Release Notes\n\n"
lv_markdown += f"**Release Date:** {lv_json['release_date']}\n\n"
lv_markdown += f"**Product Name:** {lv_json['product_name']}\n\n"
lv_markdown += f"**Summary:** {lv_json['summary']}\n\n"
lv_markdown += "## Enhancements\n"
for lv_enhancement in lv_json['enhancements']:
lv_markdown += f"### {lv_enhancement['title']}\n\n"
lv_markdown += f"**Description:** {lv_enhancement['description']}\n\n"
lv_markdown += f"**Benefits:** {lv_enhancement['benefits']}\n\n"
lv_markdown += f"**Reason:** {lv_enhancement['reason']}\n\n"
except Exception as e:
print("ReleaseNotes - Error converting JSON to Markdown",str(e))
return lv_markdown
# Function to convert requirement generation JSON to Markdown
def fn_convert_requirement_generation_json_to_markdown(lv_json):
"""Convert Requirement Generation JSON to Markdown"""
lv_markdown = ""
try:
# Convert the dictionary to Markdown format
lv_markdown = f"# {lv_json['header']}\n\n"
lv_markdown += "## Requirements\n"
for requirement in lv_json['requirements']:
lv_markdown += f"### {requirement['overview']}\n\n"
lv_markdown += f"**Description:** {requirement['description']}\n\n"
lv_markdown += f"**Benefits:** {requirement['benefits']}\n\n"
lv_markdown += f"**Reason:** {requirement['reason']}\n\n"
lv_markdown += f"**Priority:** {requirement['priority']}\n\n"
if requirement['tags']:
tags = ', '.join(requirement['tags'])
lv_markdown += f"**Tags:** {tags}\n\n"
except Exception as e:
print("Requirement Gathering - Error converting JSON to Markdown",str(e))
return lv_markdown
# Main Program
def main():
# -- Streamlit Settings
st.set_page_config(
page_title="OBMA AI Assist",
page_icon="🧊",
layout="wide",
initial_sidebar_state="expanded"
)
# -- Display Processing Details
col1, col2, col3 = st.columns(3)
ui_processing_message = col2.empty()
ui_search_web_input =st.empty()
if "lv_model_session" in st.session_state:
lv_model = st.session_state.lv_model_session
else:
lv_model= None
global lv_response
global lv_extracted_text
col2.text("")
col2.header("OBMA - AI Assist")
col2.text("")
col2.text("")
col2.text("")
# -- Variables
cn_llm_providers_lov_values = ['Huggingface','Groq','Cohere','Google','Google VertexAI','OpenAI']
cn_huggingface_models_lov_values = ['deepseek-ai/DeepSeek-R1-Distill-Qwen-32B','Qwen/Qwen2.5-72B-Instruct','meta-llama/Llama-3.3-70B-Instruct','CohereForAI/c4ai-command-r-plus-08-2024','nvidia/Llama-3.1-Nemotron-70B-Instruct-HF']
lv_user_actions = ["User Story","Release Notes","Requirement Generation","Summarization"]
# -- Configuration
with st.sidebar:
st.header("Configurations")
st.text("")
# -- Recording User Output
st.subheader("Output")
ui_user_actions = st.multiselect(
label='User Actions',
options=lv_user_actions,
default="User Story"
)
ui_show_json = st.toggle("Show JSON", value=False)
st.text("")
# -- Read LLM Configuration
st.text("")
try:
st.subheader("LLM")
ui_llm_provider = st.selectbox(label='LLM Provider',options=cn_llm_providers_lov_values)
ui_api_key = st.empty()
ui_model_details = st.empty()
if ui_llm_provider:
# -- Prepopulated Configuration Details, Comment in production
if ui_llm_provider == 'Huggingface':
ui_api_key = st.text_input("HUGGINGFACEHUB_API_TOKEN",type="password")
ui_model_details = st.selectbox("Model Details",options=cn_huggingface_models_lov_values)
os.environ["HUGGINGFACEHUB_API_TOKEN"] = ui_api_key
elif(ui_llm_provider == 'Groq'):
ui_api_key = st.text_input("GROQ_API_KEY",type="password")
ui_model_details = st.text_input("Model Details","mixtral-8x7b-32768")
os.environ["GROQ_API_KEY"] = ui_api_key
elif(ui_llm_provider == 'Cohere'):
ui_api_key = st.text_input("COHERE_API_KEY", type="password")
ui_model_details = st.text_input("Model Details","command-r-plus")
os.environ["COHERE_API_KEY"] = ui_api_key
elif(ui_llm_provider == 'Google'):
ui_api_key = st.text_input("GOOGLE_API_KEY",type="password")
ui_model_details = st.text_input("Model Details","gemini-1.5-pro-latest")
os.environ["GOOGLE_API_KEY"] = ui_api_key
elif(ui_llm_provider == 'Google VertexAI'):
ui_api_key = st.text_area("GOOGLE_APPLICATION_CREDENTIALS")
ui_model_details = st.text_input("Model Details","gemini-1.5-pro-preview-0409")
elif(ui_llm_provider == 'OpenAI'):
ui_api_key = st.text_input("OPENAI_API_KEY", type="password")
ui_model_details = st.text_input("Model Details","gpt-4o")
os.environ["OPENAI_API_KEY"] = ui_api_key
else:
st.error('Please configure LLM Details')
fn_display_user_messages("Please configure LLM Details","Error", ui_processing_message)
if st.button("Configure LLM"):
# -- Create LLM Instance
if ui_llm_provider and ui_api_key and ui_model_details:
print("Configuring LLM")
lv_model = fn_create_chatllm(ui_llm_provider, ui_api_key, ui_model_details)
st.session_state.lv_model_session = lv_model
else:
st.error('Please configure LLM Details')
fn_display_user_messages("Please configure LLM Details","Error", ui_processing_message)
except Exception as e:
st.error('Error Configuring LLM Details'+str(e))
fn_display_user_messages("Error Configuring LLM Details","Error", ui_processing_message)
# -- Recording Knowledge Base Details
st.text("")
try:
st.subheader("Knowledge Base")
ui_grounding_url = st.text_input("Grounding URL")
ui_youtube_url = st.text_input("Youtube Video ID")
ui_grounding_pdf = st.file_uploader("Grounding PDF",type="pdf",accept_multiple_files=False)
ui_grounding_wav = st.file_uploader("Grounding WAV",type="wav",accept_multiple_files=False)
ui_search_web = st.checkbox("Search Web")
if ui_search_web:
ui_search_web_input = st.text_input("Search Details")
col1, col2, col3 = st.columns([0.85,0.80,1.40])
if col1.button("Extract"):
lv_extracted_text = ""
st.session_state.lv_extracted_text = lv_extracted_text
lv_response = ""
st.session_state.lv_response = lv_response
if ui_youtube_url:
lv_extracted_text +=fn_you_tube_video_transcript(ui_youtube_url,ui_processing_message)
if ui_grounding_url:
lv_extracted_text += ' '.join(doc.page_content for doc in fn_scrape_website(ui_grounding_url))
if ui_grounding_pdf:
lv_extracted_text += ' '.join(doc.page_content for doc in fn_scraper_pdf(ui_grounding_pdf))
if ui_search_web:
if ui_search_web_input:
lv_extracted_text += fn_search_web(ui_search_web_input)
if ui_grounding_wav:
lv_extracted_text += fn_generate_speech_to_text(ui_grounding_wav.getvalue(),ui_api_key)
st.session_state.lv_extracted_text = lv_extracted_text
if col2.button("Clear"):
lv_extracted_text = ""
st.session_state.lv_extracted_text = lv_extracted_text
lv_response = ""
st.session_state.lv_response = lv_response
except Exception as e:
st.error('Error extracting data - '+str(e))
fn_display_user_messages("Error extracting data","Error", ui_processing_message)
# -- User Actions
user_story, release_notes, requirement_generation, summarization = st.tabs(lv_user_actions)
with user_story:
# -- Generate User Story LLM Response
if ui_llm_provider and lv_extracted_text and not(lv_response) and "User Story" in ui_user_actions:
# -- Pydantice Schema
lv_parser = PydanticOutputParser(pydantic_object=us.UserStory)
# -- Creating Prompt
lv_template = pt.CN_USER_STORY
lv_summarize_prompt = PromptTemplate(
template=lv_template,
input_variables=["context"],
partial_variables={"format_instructions": lv_parser.get_format_instructions()},
)
lv_summarize_prompt_formatted = lv_summarize_prompt.format(
context=lv_extracted_text
)
# -- LLM Response
if lv_model:
lv_response = fn_chatllm_response(ui_llm_provider, lv_summarize_prompt_formatted, lv_model, us.UserStory, ui_processing_message)
st.session_state.lv_response = lv_response
# -- Display LLM response
if lv_response and "User Story" in ui_user_actions:
lv_repaired = repair_json(lv_response, skip_json_loads=True)
if ui_show_json:
st.header("User Story")
st.json(lv_repaired)
else:
lv_markdown = fn_convert_user_story_json_to_markdown(json.loads(lv_repaired))
st.markdown(lv_markdown)
# st.json(lv_response)
with release_notes:
if ui_llm_provider and lv_extracted_text and not(lv_response) and "Release Notes" in ui_user_actions:
# -- Pydantice Schema
lv_parser = PydanticOutputParser(pydantic_object=rs.ReleaseNotes)
# -- Creating Prompt
lv_template = pt.CN_RELEASE_NOTES
lv_summarize_prompt = PromptTemplate(
template=lv_template,
input_variables=["context"],
partial_variables={"format_instructions": lv_parser.get_format_instructions()},
)
lv_summarize_prompt_formatted = lv_summarize_prompt.format(
context=lv_extracted_text
)
# -- LLM Response
if lv_model:
lv_response = fn_chatllm_response(ui_llm_provider, lv_summarize_prompt_formatted, lv_model, rs.ReleaseNotes, ui_processing_message)
st.session_state.lv_response = lv_response
# -- Display LLM response
if lv_response and "Release Notes" in ui_user_actions:
lv_repaired = repair_json(lv_response, skip_json_loads=True)
if ui_show_json:
st.header("Release Notes")
st.json(lv_repaired)
else:
lv_markdown = fn_convert_release_notes_json_to_markdown(json.loads(lv_repaired))
st.markdown(lv_markdown)
with requirement_generation:
if ui_llm_provider and lv_extracted_text and not(lv_response) and "Requirement Generation" in ui_user_actions:
# -- Pydantice Schema
lv_parser = PydanticOutputParser(pydantic_object=rq.RequirementGatheringDetails)
# -- Creating Prompt
lv_template = pt.CN_REQUIREMENT_GATHERING
lv_summarize_prompt = PromptTemplate(
template=lv_template,
input_variables=["context"],
partial_variables={"format_instructions": lv_parser.get_format_instructions()},
)
lv_summarize_prompt_formatted = lv_summarize_prompt.format(
context=lv_extracted_text
)
# -- LLM Response
if lv_model:
lv_response = fn_chatllm_response(ui_llm_provider, lv_summarize_prompt_formatted, lv_model, rq.RequirementGatheringDetails, ui_processing_message)
st.session_state.lv_response = lv_response
# -- Display LLM response
if lv_response and "Requirement Generation" in ui_user_actions:
lv_repaired = repair_json(lv_response, skip_json_loads=True)
if ui_show_json:
st.header("Requirement Generation")
st.json(lv_repaired)
else:
lv_markdown = fn_convert_requirement_generation_json_to_markdown(json.loads(lv_repaired))
st.markdown(lv_markdown)
with summarization:
if ui_llm_provider and "Summarization" in ui_user_actions:
st.header("Summarization")
st.text("")
st.text("")
ui_summary_input = st.text_area("Input Text", value=lv_extracted_text)
if st.button("Summarize",key="summary"):
# -- Creating Prompt
lv_template = pt.CN_SUMMARY
lv_summarize_prompt = PromptTemplate(
template=lv_template,
input_variables=["context"]
)
lv_summarize_prompt_formatted = lv_summarize_prompt.format(
context=ui_summary_input
)
# -- LLM Response
if lv_model:
lv_response = fn_chatllm_response(ui_llm_provider, lv_summarize_prompt_formatted, lv_model, None, ui_processing_message)
st.session_state.lv_response = lv_response
# -- Display LLM response
if lv_response:
st.subheader("Summary")
st.markdown(lv_response)
# Loading Main
if __name__ == "__main__":
main() |