File size: 115,958 Bytes
26827a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]

import bisect
import copy
import re
import string
from collections import defaultdict
from typing import List

import nltk
import numpy as np
import tiktoken
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoModelForTokenClassification,
    AutoTokenizer,
)

from core_utils_llmlingua2 import (TokenClfDataset, get_pure_token, is_begin_of_new_word, replace_added_token, seed_everything,)
#from core_utils_llmlingua2_phobert import (TokenClfDataset, get_pure_token, is_begin_of_new_word, replace_added_token, seed_everything,)


class PromptCompressor:
    """
    PromptCompressor is designed for compressing prompts based on a given language model.

    This class initializes with the language model and its configuration, preparing it for prompt compression tasks.
    The PromptCompressor class is versatile and can be adapted for various models and specific requirements in prompt processing.
    Users can specify different model names and configurations as needed for their particular use case.The architecture is
    based on the paper "LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models". Jiang, Huiqiang, Qianhui Wu,
    Chin-Yew Lin, Yuqing Yang, and Lili Qiu. "Llmlingua: Compressing prompts for accelerated inference of large language models."
    arXiv preprint arXiv:2310.05736 (2023).

    Args:
        model_name (str, optional): The name of the language model to be loaded. Default is "NousResearch/Llama-2-7b-hf".
        device_map (str, optional): The device to load the model onto, e.g., "cuda" for GPU. Default is "cuda".
        model_config (dict, optional): A dictionary containing the configuration parameters for the model. Default is an empty dictionary.
        open_api_config (dict, optional): A dictionary containing configuration for openai APIs that may be used in conjunction with the model. Default is an empty dictionary.
        use_llmlingua2 (bool, optional): Whether to use llmlingua-2 compressor based on the paper
            "LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression".
            Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang.
            "LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression". arXiv preprint arXiv:,
            Default is True.
        llmlingua2_config (dict, optional): A dictionary containing the configuration parameters for llmlingua-2. Default is
            {
                "max_batch_size": 50,
                "max_force_token": 100, # max number of the tokens which will be forcely preserved
            }
    Example:
        >>> compress_method = PromptCompressor(model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank", use_llmlingua2=True, )
        >>> context = ["This is the first context sentence.", "Here is another context sentence."]
        >>> result = compress_method.compress_prompt(context, use_context_level_filter=True, target_token=5)
        >>> print(result["compressed_prompt"])
        # This will print the compressed version of the context.

    Note:
        The `PromptCompressor` class requires the Hugging Face Transformers library and an appropriate environment to load and run the models.
    """

    def __init__(
        self,
        model_name: str = "NousResearch/Llama-2-7b-hf",
        device_map: str = "cuda",
        model_config: dict = {},
        open_api_config: dict = {},
        use_llmlingua2: bool = False,
        llmlingua2_config: dict = {},
    ):
        self.model_name = model_name
        self.use_llmlingua2 = use_llmlingua2
        self.retrieval_model = None
        self.retrieval_model_name = None
        self.open_api_config = open_api_config
        self.cache_bos_num = 10
        self.prefix_bos_num = 100
        self.oai_tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")

        self.load_model(model_name, device_map, model_config)
        if use_llmlingua2:
            self.init_llmlingua2(**llmlingua2_config)

    def init_llmlingua2(
        self,
        max_batch_size: int = 50,
        max_force_token: int = 100,
    ):
        seed_everything(42)
        self.max_batch_size = max_batch_size
        self.max_seq_len = 512 # 512 (xlm-roberta)  256 (phobert)
        self.max_force_token = max_force_token
        self.special_tokens = set(      # trả ra special tokens
            [
                v
                for k, v in self.tokenizer.special_tokens_map.items()
                if k != "additional_special_tokens"
            ]
        )

        self.added_tokens = [f"[NEW{i}]" for i in range(max_force_token)]
        self.tokenizer.add_special_tokens(      # Add special token in force token
            {"additional_special_tokens": self.added_tokens}
        )
        self.model.resize_token_embeddings(len(self.tokenizer))     # Resize embedding dim

    def load_model(
        self, model_name: str, device_map: str = "cuda", model_config: dict = {}
    ):
        trust_remote_code = model_config.get("trust_remote_code", True)
        if "trust_remote_code" not in model_config:
            model_config["trust_remote_code"] = trust_remote_code
        config = AutoConfig.from_pretrained(model_name, **model_config)
        tokenizer = AutoTokenizer.from_pretrained(model_name, **model_config)
        if model_config.get("pad_to_left", True):
            tokenizer.padding_side = "left"
            tokenizer.pad_token_id = (
                config.pad_token_id if config.pad_token_id else tokenizer.eos_token_id
            )
        MODEL_CLASS = (
            AutoModelForTokenClassification # Use llmlingua2
            if any("ForTokenClassification" in ar for ar in config.architectures)
            else AutoModelForCausalLM
        )
        self.device = (
            device_map
            if any(key in device_map for key in ["cuda", "cpu", "mps"])
            else "cuda"
        )
        if "cuda" in device_map or "cpu" in device_map:
            model = MODEL_CLASS.from_pretrained(
                model_name,
                torch_dtype=model_config.get(
                    "torch_dtype", "auto" if device_map == "cuda" else torch.float32
                ),
                device_map=device_map,
                config=config,
                ignore_mismatched_sizes=True,
                **model_config,
            )
        else:
            model = MODEL_CLASS.from_pretrained(
                model_name,
                device_map=device_map,
                torch_dtype=model_config.get("torch_dtype", "auto"),
                pad_token_id=tokenizer.pad_token_id,
                **model_config,
            )
        self.tokenizer = tokenizer
        self.model = model
        self.context_idxs = []
        self.max_position_embeddings = config.max_position_embeddings

    def get_ppl(
        self,
        text: str,
        granularity: str = "sentence",
        input_ids=None,
        attention_mask=None,
        past_key_values=None,
        return_kv=False,
        end=None,
        condition_mode: str = "none",
        condition_pos_id: int = 0,
    ):
        if input_ids is None:
            tokenized_text = self.tokenizer(text, return_tensors="pt")
            input_ids = tokenized_text["input_ids"].to(self.device)
            attention_mask = tokenized_text["attention_mask"].to(self.device)
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]
        else:
            past_length = 0
        if end is None:
            end = input_ids.shape[1]
        end = min(end, past_length + self.max_position_embeddings)
        with torch.no_grad():
            response = self.model(
                input_ids[:, past_length:end],
                attention_mask=attention_mask[:, :end],
                past_key_values=past_key_values,
                use_cache=True,
            )
            past_key_values = response.past_key_values

        shift_logits = response.logits[..., :-1, :].contiguous()
        shift_labels = input_ids[..., past_length + 1 : end].contiguous()
        # Flatten the tokens
        active = (attention_mask[:, past_length:end] == 1)[..., :-1].view(-1)
        active_logits = shift_logits.view(-1, shift_logits.size(-1))[active]
        active_labels = shift_labels.view(-1)[active]
        loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
        loss = loss_fct(active_logits, active_labels)
        if condition_mode == "before":
            loss = loss[:condition_pos_id]
        elif condition_mode == "after":
            loss = loss[condition_pos_id:]
        res = loss.mean() if granularity == "sentence" else loss
        return (res, past_key_values) if return_kv else res

    def __call__(self, *args, **kwargs):
        return self.compress_prompt(*args, **kwargs)

    def structured_compress_prompt(
        self,
        context: List[str],
        instruction: str = "",
        question: str = "",
        rate: float = 0.5,
        target_token: float = -1,
        iterative_size: int = 200,
        force_context_ids: List[int] = None,
        force_context_number: int = None,
        use_sentence_level_filter: bool = False,
        use_context_level_filter: bool = True,
        use_token_level_filter: bool = True,
        keep_split: bool = False,
        keep_first_sentence: int = 0,
        keep_last_sentence: int = 0,
        keep_sentence_number: int = 0,
        high_priority_bonus: int = 100,
        context_budget: str = "+100",
        token_budget_ratio: float = 1.4,
        condition_in_question: str = "none",
        reorder_context: str = "original",
        dynamic_context_compression_ratio: float = 0.0,
        condition_compare: bool = False,
        add_instruction: bool = False,
        rank_method: str = "llmlingua",
        concate_question: bool = True,
    ):
        """
        Compresses the given prompt context based on a specified structure.

        Each element of context should be segmented using one or more non-nested '<llmlingua></llmlingua>' tags.
        Each '<llmlingua>' tag can include optional parameters 'rate' and 'compress' (e.g., '<llmlingua, rate=0.3, compress=True>'),
        indicating the compression rate for that segment. Default values are 'rate=rate' and 'compress=True'.
        When 'compress' is set to False, it overrides the 'rate' parameter, resulting in no compression for that segment.

        Args:
            context (List[str]): List of context strings divided by '<llmlingua></llmlingua>' tags with optional compression settings.
            instruction (str, optional): Additional instruction text to be included in the prompt. Default is an empty string.
            question (str, optional): A specific question that the prompt is addressing. Default is an empty string.
            rate (float, optional): The compression rate is defined the same as in paper "Language Modeling Is Compression".
                Delétang, Grégoire, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher Mattern,
                Jordi Grau-Moya et al. "Language modeling is compression." arXiv preprint arXiv:2309.10668 (2023):
                .. math::\text{Compression Rate} = \frac{\text{Compressed Size}}{\text{Raw Size}}
                Default is 0.5. The actual compression rate is generally lower than the specified target, but there can be
                fluctuations due to differences in tokenizers. If specified, it should be a float less than or equal
                to 1.0, representing the target compression rate. ``rate``, is applicable only within the context-level filter
                and the sentence-level filter. In the token-level filter, the rate for each segment overrides the global rate.
                However, for segments where no specific rate is defined, the global rate serves as the default value. The final
                compression rate of the entire text is a composite result of multiple compression rates applied across different sections.
            target_token (float, optional): The global maximum number of tokens to be achieved. Default is -1, indicating no
                specific target. The actual number of tokens after compression should generally be less than the specified target_token,
                but there can be fluctuations due to differences in tokenizers. If specified, compression will be based on the target_token as
                the sole criterion, overriding the ``rate``. ``target_token``, is applicable only within the context-level
                filter and the sentence-level filter. In the token-level filter, the rate for each segment overrides the global target token.
                However, for segments where no specific rate is defined, the global rate calculated from global target token serves
                as the default value. The final target token of the entire text is a composite result of multiple compression rates
                applied across different sections.
            iterative_size (int, optional): The number of tokens to consider in each iteration of compression. Default is 200.
            force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
            force_context_number (int, optional): The number of context sections to forcibly include. Default is None.
            use_sentence_level_filter (bool, optional): Whether to apply sentence-level filtering in compression. Default is False.
            use_context_level_filter (bool, optional): Whether to apply context-level filtering in compression. Default is True.
            use_token_level_filter (bool, optional): Whether to apply token-level filtering in compression. Default is True.
            keep_split (bool, optional): Whether to preserve the original separators without compression. Default is False.
            keep_first_sentence (int, optional): Number of sentences to forcibly preserve from the start of the context. Default is 0.
            keep_last_sentence (int, optional): Number of sentences to forcibly preserve from the end of the context. Default is 0.
            keep_sentence_number (int, optional): Total number of sentences to forcibly preserve in the compression. Default is 0.
            high_priority_bonus (int, optional): Bonus score for high-priority sentences to influence their likelihood of being retained. Default is 100.
            context_budget (str, optional): Token budget for the context-level filtering, expressed as a string to indicate flexibility. Default is "+100".
            token_budget_ratio (float, optional): Ratio to adjust token budget during sentence-level filtering. Default is 1.4.
            condition_in_question (str, optional): Specific condition to apply to question in the context. Default is "none".
            reorder_context (str, optional): Strategy for reordering context in the compressed result. Default is "original".
            dynamic_context_compression_ratio (float, optional): Ratio for dynamically adjusting context compression. Default is 0.0.
            condition_compare (bool, optional): Whether to enable condition comparison during token-level compression. Default is False.
            add_instruction (bool, optional): Whether to add the instruction to the prompt prefix. Default is False.
            rank_method (str, optional): Method used for ranking elements during compression. Default is "llmlingua".
            concate_question (bool, optional): Whether to concatenate the question to the compressed prompt. Default is True.

        Returns:
            dict: A dictionary containing:
                - "compressed_prompt" (str): The resulting compressed prompt.
                - "origin_tokens" (int): The original number of tokens in the input.
                - "compressed_tokens" (int): The number of tokens in the compressed output.
                - "ratio" (str): The compression ratio achieved, calculated as the original token number divided by the token number after compression.
                - "rate" (str): The compression rate achieved, in a human-readable format.
                - "saving" (str): Estimated savings in GPT-4 token usage.
        """
        if not context:
            context = [" "]
        if isinstance(context, str):
            context = [context]
        context = [
            self.tokenizer.decode(self.tokenizer(c, add_special_tokens=False).input_ids)
            for c in context
        ]
        context_tokens_length = [self.get_token_length(c) for c in context]
        instruction_tokens_length, question_tokens_length = self.get_token_length(
            instruction
        ), self.get_token_length(question)
        if target_token == -1:
            target_token = (
                (
                    instruction_tokens_length
                    + question_tokens_length
                    + sum(context_tokens_length)
                )
                * rate
                - instruction_tokens_length
                - (question_tokens_length if concate_question else 0)
            )
        else:
            rate = target_token / sum(context_tokens_length)
        (
            context,
            context_segs,
            context_segs_rate,
            context_segs_compress,
        ) = self.segment_structured_context(context, rate)
        return self.compress_prompt(
            context,
            instruction,
            question,
            rate,
            target_token,
            iterative_size,
            force_context_ids,
            force_context_number,
            use_sentence_level_filter,
            use_context_level_filter,
            use_token_level_filter,
            keep_split,
            keep_first_sentence,
            keep_last_sentence,
            keep_sentence_number,
            high_priority_bonus,
            context_budget,
            token_budget_ratio,
            condition_in_question,
            reorder_context,
            dynamic_context_compression_ratio,
            condition_compare,
            add_instruction,
            rank_method,
            concate_question,
            context_segs=context_segs,
            context_segs_rate=context_segs_rate,
            context_segs_compress=context_segs_compress,
        )

    def compress_prompt(
        self,
        context: List[str],
        instruction: str = "",
        question: str = "",
        # llmlingua1
        rate: float = 0.5,
        target_token: float = -1,
        iterative_size: int = 200,
        force_context_ids: List[int] = None,
        force_context_number: int = None,
        use_sentence_level_filter: bool = False,    # hầu như ko dùng
        use_context_level_filter: bool = True,
        use_token_level_filter: bool = True,
        keep_split: bool = False,
        keep_first_sentence: int = 0,
        keep_last_sentence: int = 0,
        keep_sentence_number: int = 0,
        high_priority_bonus: int = 100,
        context_budget: str = "+100",
        token_budget_ratio: float = 1.4,
        condition_in_question: str = "none",
        reorder_context: str = "original",
        dynamic_context_compression_ratio: float = 0.0,
        condition_compare: bool = False,
        add_instruction: bool = False,
        rank_method: str = "llmlingua",
        concate_question: bool = True,
        context_segs: List[str] = None,
        context_segs_rate: List[float] = None,
        context_segs_compress: List[bool] = None,
        # llmlingua2
        target_context: int = -1,       # config số lượng context trả về
        context_level_rate: float = 1.0,        # config tỉ lệ nén nhỏ nhất khi sử dụng context-level
        context_level_target_token: int = -1,    # config số token tối đa khi sử dụng context-level
        return_word_label: bool = False,    # config liệu có trả về word trong label
        word_sep: str = "\t\t|\t\t",
        label_sep: str = " ",
        token_to_word: str = "mean",    # Config phương pháp sử dụng chuyển từ xác suất token sang xác suất word
        force_tokens: List[str] = [],   # Config các tokens luôn được giữ lại trong compressed prompt
        force_reserve_digit: bool = False,  # Config liệu có bắt buộc giữ các token là chữ số
        drop_consecutive: bool = False,     # Config liệu có loại bỏ các tokens trong force token khi mà các từ này xuất hiện trong compressed prompt
        chunk_end_tokens: List[str] = [".", "\n"],  # Config các stop token để segment chunk
    ):
        """
        Compresses the given context.

        Args:
            context (List[str]): List of context strings that form the basis of the prompt.
            instruction (str, optional): Additional instruction text to be included in the prompt. Default is an empty string.
            question (str, optional): A specific question that the prompt is addressing. Default is an empty string.
            rate (float, optional): The maximum compression rate target to be achieved. The compression rate is defined
                the same as in paper "Language Modeling Is Compression". Delétang, Grégoire, Anian Ruoss, Paul-Ambroise Duquenne,
                Elliot Catt, Tim Genewein, Christopher Mattern, Jordi Grau-Moya et al. "Language modeling is compression."
                arXiv preprint arXiv:2309.10668 (2023):
                .. math::\text{Compression Rate} = \frac{\text{Compressed Size}}{\text{Raw Size}}
                Default is 0.5. The actual compression rate is generally lower than the specified target, but there can be
                fluctuations due to differences in tokenizers. If specified, it should be a float less than or equal
                to 1.0, representing the target compression rate.
            target_token (float, optional): The maximum number of tokens to be achieved. Default is -1, indicating no specific target.
                The actual number of tokens after compression should generally be less than the specified target_token, but there can
                be fluctuations due to differences in tokenizers. If specified, compression will be based on the target_token as
                the sole criterion, overriding the ``rate``.
            iterative_size (int, optional): The number of tokens to consider in each iteration of compression. Default is 200.
            force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
            force_context_number (int, optional): The number of context sections to forcibly include. Default is None.
            use_sentence_level_filter (bool, optional): Whether to apply sentence-level filtering in compression. Default is False.
            use_context_level_filter (bool, optional): Whether to apply context-level filtering in compression. Default is True.
            use_token_level_filter (bool, optional): Whether to apply token-level filtering in compression. Default is True.
            keep_split (bool, optional): Whether to preserve the original separators without compression. Default is False.
            keep_first_sentence (int, optional): Number of sentences to forcibly preserve from the start of the context. Default is 0.
            keep_last_sentence (int, optional): Number of sentences to forcibly preserve from the end of the context. Default is 0.
            keep_sentence_number (int, optional): Total number of sentences to forcibly preserve in the compression. Default is 0.
            high_priority_bonus (int, optional): Bonus score for high-priority sentences to influence their likelihood of being retained. Default is 100.
            context_budget (str, optional): Token budget for the context-level filtering, expressed as a string to indicate flexibility. Default is "+100".
            token_budget_ratio (float, optional): Ratio to adjust token budget during sentence-level filtering. Default is 1.4.
            condition_in_question (str, optional): Specific condition to apply to question in the context. Default is "none".
            reorder_context (str, optional): Strategy for reordering context in the compressed result. Default is "original".
            dynamic_context_compression_ratio (float, optional): Ratio for dynamically adjusting context compression. Default is 0.0.
            condition_compare (bool, optional): Whether to enable condition comparison during token-level compression. Default is False.
            add_instruction (bool, optional): Whether to add the instruction to the prompt prefix. Default is False.
            rank_method (str, optional): Method used for ranking elements during compression. Default is "llmlingua".
            concate_question (bool, optional): Whether to concatenate the question to the compressed prompt. Default is True.

            target_context (int, optional): The maximum number of contexts to be achieved. Default is -1, indicating no specific target.
            context_level_rate (float, optional): The minimum compression rate target to be achieved in context level. Default is 1.0.
            context_level_target_token (float, optional): The maximum number of tokens to be achieved in context level compression.
                Default is -1, indicating no specific target. Only used in the coarse-to-fine compression senario.
            force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
            return_word_label (bool, optional): Whether to return word with corresponding label. Default is False.
            word_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition words. Default is "\t\t|\t\t".
            label_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition word and label.  Default is " ".
            token_to_word (str, optional): How to convert token probability to word probability. Default is "mean".
            force_tokens (List[str], optional): List of specific tokens to always include in the compressed result. Default is [].
            force_reserve_digit  (bool, optional): Whether to forcibly reserve tokens that containing digit (0,...,9). Default is False.
            drop_consecutive (bool, optinal): Whether to drop tokens which are in 'force_tokens' but appears consecutively in compressed prompt.
                Default is False.
            chunk_end_tokens (List[str], optinal): The early stop tokens for segmenting chunk. Default is [".", "\n"],
        Returns:
            dict: A dictionary containing:
                - "compressed_prompt" (str): The resulting compressed prompt.
                - "compressed_prompt_list" (List[str]): List of the resulting compressed prompt. Only used in llmlingua2.
                - "fn_labeled_original_prompt" (str): original words along with their labels
                    indicating whether to reserve in compressed prompt, in the format (word label_sep label)
                    Only used in llmlingua2 when return_word_label = True.
                - "origin_tokens" (int): The original number of tokens in the input.
                - "compressed_tokens" (int): The number of tokens in the compressed output.
                - "ratio" (str): The compression ratio achieved, calculated as the original token number divided by the token number after compression.
                - "rate" (str): The compression rate achieved, in a human-readable format.
                - "saving" (str): Estimated savings in GPT-4 token usage.
        """
        if self.use_llmlingua2: # dùng cả llmlingua2 và llmlingua1
            return self.compress_prompt_llmlingua2(
                context,
                rate=rate,
                target_token=target_token,
                use_context_level_filter=use_context_level_filter,      # True
                use_token_level_filter=use_token_level_filter,
                target_context=target_context,
                context_level_rate=context_level_rate,
                context_level_target_token=context_level_target_token,
                force_context_ids=force_context_ids,
                return_word_label=return_word_label,
                word_sep=word_sep,
                label_sep=label_sep,
                token_to_word=token_to_word,
                force_tokens=force_tokens,
                force_reserve_digit=force_reserve_digit,
                drop_consecutive=drop_consecutive,
                chunk_end_tokens=chunk_end_tokens,
            )
        
        # return luôn một hàm là ko chạy tiếp phần sau nữa
        assert (
            rate <= 1.0
        ), "Error: 'rate' must not exceed 1.0. The value of 'rate' indicates compression rate and must be within the range [0, 1]."

        if not context:
            context = [" "]
        if isinstance(context, str):
            context = [context]
        assert not (
            rank_method == "longllmlingua" and not question
        ), "In the LongLLMLingua, it is necessary to set a question."
        if condition_compare and "_condition" not in condition_in_question:
            condition_in_question += "_condition"
        if rank_method == "longllmlingua":
            if condition_in_question == "none":
                condition_in_question = "after"
        elif rank_method == "llmlingua":
            condition_in_question = (
                "none"
                if "_condition" not in condition_in_question
                else "none_condition"
            )
        origin_tokens = len(
            self.oai_tokenizer.encode(
                "\n\n".join([instruction] + context + [question]).strip()
            )
        )
        context_tokens_length = [self.get_token_length(c) for c in context]
        instruction_tokens_length, question_tokens_length = self.get_token_length(
            instruction
        ), self.get_token_length(question)
        if target_token == -1:
            target_token = (
                (
                    instruction_tokens_length
                    + question_tokens_length
                    + sum(context_tokens_length)
                )
                * rate
                - instruction_tokens_length
                - (question_tokens_length if concate_question else 0)
            )
        condition_flag = "_condition" in condition_in_question
        condition_in_question = condition_in_question.replace("_condition", "")

        if len(context) > 1 and use_context_level_filter:
            context, dynamic_ratio, context_used = self.control_context_budget(
                context,
                context_tokens_length,
                target_token,
                force_context_ids,
                force_context_number,
                question,
                condition_in_question,
                reorder_context=reorder_context,
                dynamic_context_compression_ratio=dynamic_context_compression_ratio,
                rank_method=rank_method,
                context_budget=context_budget,
                context_segs=context_segs,
                context_segs_rate=context_segs_rate,
                context_segs_compress=context_segs_compress,
            )
            #print('Context used: ', context_used)
            if context_segs is not None:
                context_segs = [context_segs[idx] for idx in context_used]
                context_segs_rate = [context_segs_rate[idx] for idx in context_used]
                context_segs_compress = [
                    context_segs_compress[idx] for idx in context_used
                ]
        else:
            dynamic_ratio = [0.0] * len(context)

        segments_info = []
        if use_sentence_level_filter:
            context, segments_info = self.control_sentence_budget(
                context,
                target_token,
                keep_first_sentence=keep_first_sentence,
                keep_last_sentence=keep_last_sentence,
                keep_sentence_number=keep_sentence_number,
                high_priority_bonus=high_priority_bonus,
                token_budget_ratio=token_budget_ratio,
                question=question,
                condition_in_question=condition_in_question,
                rank_method=rank_method,
                context_segs=context_segs,
                context_segs_rate=context_segs_rate,
                context_segs_compress=context_segs_compress,
            )
        elif context_segs is not None:
            for context_idx in range(len(context)):
                segments_info.append(
                    [
                        (len(seg_text), seg_rate, seg_compress)
                        for seg_text, seg_rate, seg_compress in zip(
                            context_segs[context_idx],
                            context_segs_rate[context_idx],
                            context_segs_compress[context_idx],
                        )
                    ]
                )
        segments_info = [
            self.concate_segment_info(segment_info) for segment_info in segments_info
        ]

        if condition_flag:
            prefix = question + "\n\n" + instruction if add_instruction else question
            if (
                self.get_token_length(prefix + "\n\n") + iterative_size * 2
                > self.max_position_embeddings
            ):
                tokens = self.tokenizer(prefix, add_special_tokens=False).input_ids
                prefix = self.tokenizer.decode(
                    tokens[: self.prefix_bos_num]
                    + tokens[
                        len(tokens)
                        - self.max_position_embeddings
                        + 2
                        + self.prefix_bos_num
                        + 2 * iterative_size :
                    ]
                )
            start = self.get_prefix_length(prefix + "\n\n", context[0])
            context = [prefix] + context
        else:
            start = 0

        #print('Context level: ', context)

        if use_token_level_filter:
            context = self.iterative_compress_prompt(
                context,
                target_token,
                iterative_size=iterative_size,
                keep_split=keep_split,
                start=start,
                dynamic_ratio=dynamic_ratio,
                condition_compare=condition_compare,
                segments_info=segments_info,
            )
            compressed_prompt = (
                self.tokenizer.batch_decode(context[0])[0]
                .replace("<s> ", "")
                .replace("<s>", "")
            )
        else:
            if condition_flag:
                context = context[1:]
            compressed_prompt = "\n\n".join(context)
            #compressed_prompt = " ".join(context)


        compressed_prompt = "\n\n".join(context)        # gồm cả context của 2 loại level
        #compressed_prompt = " ".join(context)
        res = []
        if instruction:
            res.append(instruction)
        if compressed_prompt.strip():
            res.append(compressed_prompt)
        if question and concate_question:
            res.append(question)

        compressed_prompt = "\n\n".join(res)
        #compressed_prompt = " ".join(res)

        compressed_tokens = len(self.oai_tokenizer.encode(compressed_prompt))
        saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
        ratio = 1 if compressed_tokens == 0 else origin_tokens / compressed_tokens
        rate = 1 / ratio
        return {
            "compressed_prompt": compressed_prompt,
            "origin_tokens": origin_tokens,
            "compressed_tokens": compressed_tokens,
            "ratio": f"{ratio:.1f}x",
            "rate": f"{rate * 100:.1f}%",
            "saving": f", Saving ${saving:.1f} in GPT-4.",
        }

    def compress_prompt_llmlingua2(
        self,
        context: List[str],
        rate: float = 0.5,
        target_token: int = -1,
        use_context_level_filter: bool = False,     # True
        use_token_level_filter: bool = True,
        target_context: int = -1,
        context_level_rate: float = 1.0,
        context_level_target_token: int = -1,
        force_context_ids: List[int] = [],
        return_word_label: bool = False,
        word_sep: str = "\t\t|\t\t",
        label_sep: str = " ",
        token_to_word: str = "mean",
        force_tokens: List[str] = [],
        force_reserve_digit: bool = False,
        drop_consecutive: bool = False,
        chunk_end_tokens: List[str] = [".", "\n"],
    ):
        """
        Compresses the given context, instruction and question.

        Args:
            context (List[str]): List of context strings that form the basis of the prompt.
            rate (float, optional): The minimum compression rate target to be achieved. Default is 0.5. The actual compression rate
                generally exceeds the specified target, but there can be fluctuations due to differences in tokenizers. If specified,
                it should be a float greater than or equal to 1.0, representing the target compression rate.
            target_token (int, optional): The maximum number of tokens to be achieved. Default is -1, indicating no specific target.
                The actual number of tokens after compression should generally be less than the specified target_token, but there can
                be fluctuations due to differences in tokenizers. If specified, compression will be based on the target_token as
                the sole criterion, overriding the rate.
            target_context (int, optional): The maximum number of contexts to be achieved. Default is -1, indicating no specific target.
                Only used in the coarse-to-fine compression.
            context_level_rate (float, optional): The minimum compression rate target to be achieved in context level. Default is 1.0.
                Only used in the coarse-to-fine compression.
            context_level_target_token (float, optional): The maximum number of tokens to be achieved in context level compression.
                Default is -1, indicating no specific target. Only used in the coarse-to-fine compression senario.
            force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
            return_word_label (bool, optional): Whether to return word with corresponding label. Default is False.
            word_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition words. Default is "\t\t|\t\t".
            label_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition word and label.  Default is " ".
            token_to_word (str, optional): How to convert token probability to word probability. Default is "mean".
            force_tokens (List[str], optional): List of specific tokens to always include in the compressed result. Default is [].
            force_reserve_digit  (bool, optional): Whether to forcibly reserve tokens that containing digit (0,...,9). Default is False.
            drop_consecutive (bool, optinal): Whether to drop tokens which are in 'force_tokens' but appears consecutively in compressed prompt.
                Default is False.
            chunk_end_tokens (List[str], optional): The early stop tokens for segmenting chunk. Default is [".", "\n"].
        Returns:
            dict: A dictionary containing:
                - "compressed_prompt" (str): The resulting compressed prompt.
                - "compressed_prompt_list" (List[str]): List of the resulting compressed prompt. (compress cho từng chụnk)
                - "fn_labeled_original_prompt" (str): original words along with their labels     (các từ được giữ lại)
                    indicating whether to reserve in compressed prompt, in the format (word label_sep label)
                - "origin_tokens" (int): The original number of tokens in the input.
                - "compressed_tokens" (int): The number of tokens in the compressed output.
                - "ratio" (str): The compression ratio achieved, in a human-readable format.
                - "rate" (str): The compression rate achieved, in a human-readable format.
                - "saving" (str): Estimated savings in GPT-4 token usage.

        """
        assert len(force_tokens) <= self.max_force_token    # báo hiệu force token
        token_map = {}
        for i, t in enumerate(force_tokens):
            if len(self.tokenizer.tokenize(t)) != 1:
                token_map[t] = self.added_tokens[i]     # add token (là các force token) + các kí tự [NEW]
        #print('token map:', token_map)
        chunk_end_tokens = copy.deepcopy(chunk_end_tokens)
        for c in chunk_end_tokens:
            if c in token_map:
                chunk_end_tokens.append(token_map[c])       # Thêm các force token
        chunk_end_tokens = set(chunk_end_tokens)
        #print('chunk_end_tokens: ', chunk_end_tokens)

        if type(context) == str:
            context = [context]
        context = copy.deepcopy(context)

        #print('original context: ', context)

        if len(context) == 1 and use_context_level_filter:  # Sử dụng context-level     # len context > 1
            use_context_level_filter = False
        # Bắt buộc ko dùng context level
            
        n_original_token = 0
        context_chunked = []
        for i in range(len(context)):
            n_original_token += self.get_token_length(
                context[i], use_oai_tokenizer=True
            )
            for ori_token, new_token in token_map.items():
                context[i] = context[i].replace(ori_token, new_token)
            context_chunked.append(
                self.__chunk_context(context[i], chunk_end_tokens=chunk_end_tokens)     # Hàm chia chunk trong llmlingua2
            )       # list chunk
        #print('context chunked:', context_chunked) (vẫn còn 5 context ban đầu)

        #========================================================================================
        # tinh chỉnh hyperparameter
        if use_context_level_filter: # mặc định là dùng context level trong llmlingua2 do trong hàm compress prompt ban đầu default True   
            # want use_context_level_filter but do not specify any parameters in context level?
            # Sử dụng context-level nhưng không config cụ thể các tham số trong context-level
            # we will set context_level_rate = (rate + 1.0) / 2 if specify rate or target_token * 2 if specify target_token
            if (
                target_context <= 0
                and context_level_rate >= 1.0
                and context_level_target_token <= 0
            ):
                if target_token < 0 and rate < 1.0:
                    context_level_rate = (
                        (rate + 1.0) / 2 if use_token_level_filter else rate
                    )
                if target_token >= 0:
                    context_level_target_token = (
                        target_token * 2 if use_token_level_filter else target_token
                    )

            if target_context >= 0:     # Config target_context
                context_level_rate = min(target_context / len(context), 1.0)
            if context_level_target_token >= 0: # Config target_token (context_level)
                context_level_rate = min(
                    context_level_target_token / n_original_token, 1.0
                )
        #========================================================================================
            context_probs, context_words = self.__get_context_prob(
                context_chunked,        # list các context chunk
                token_to_word=token_to_word,
                force_tokens=force_tokens,
                token_map=token_map,
                force_reserve_digit=force_reserve_digit,
            )
            #print('context_probs: ', context_probs)    # prob của tưng context
            #print('context words: ', context_words)
            #print('context level rate: ', context_level_rate)

            threshold = np.percentile(      # filtering theo probs
                context_probs, int(100 * (1 - context_level_rate))      # chỉnh context_level_rate cho threshold, lọc context-level
            )
            #print('threshold: ', threshold)

            reserved_context = []       # các context được giữ lại theo threshold (từ 5 ban đầu có thể giảm đi (<5))
            context_label = [False] * len(context_probs)
            for i, p in enumerate(context_probs):
                if p >= threshold or (
                    force_context_ids is not None and i in force_context_ids
                ):
                    reserved_context.append(context_chunked[i])
                    context_label[i] = True
            #print('reserved_context: ', reserved_context)      # các context được giữ lại theo threshold
            #print('context_label: ', context_label)

            n_reserved_token = 0
            for chunks in reserved_context:
                for c in chunks:
                    n_reserved_token += self.get_token_length(c, use_oai_tokenizer=True)    # số lượng token được giữ lại
            if target_token >= 0:
                rate = min(target_token / n_reserved_token, 1.0)

            # có/ko sử dụng token-level vẫn trả về prompt compress 
            if use_token_level_filter:  # lọc theo context-level rồi lọc theo token-level ()
                compressed_context, word_list, word_label_list = self.__compress(
                    reserved_context,       # compress từng context reserved được giữ lại
                    reduce_rate=max(0, 1 - rate),
                    token_to_word=token_to_word,
                    force_tokens=force_tokens,
                    token_map=token_map,
                    force_reserve_digit=force_reserve_digit,
                    drop_consecutive=drop_consecutive,
                )
            else:
                compressed_context, word_list, word_label_list = self.__compress(
                    reserved_context,
                    reduce_rate=0,
                    token_to_word=token_to_word,
                    force_tokens=force_tokens,
                    token_map=token_map,
                    force_reserve_digit=force_reserve_digit,
                    drop_consecutive=drop_consecutive,
                )

            #print('compressed_context 1: ', compressed_context)  # list        # Final compressed
            #print('word_list: ', word_list)
            #print('word_label_list: ', word_label_list)    # labels list của từng chunk

            n_compressed_token = 0
            for c in compressed_context:
                n_compressed_token += self.get_token_length(c, use_oai_tokenizer=True)
            saving = (n_original_token - n_compressed_token) * 0.06 / 1000
            ratio = (
                1 if n_compressed_token == 0 else n_original_token / n_compressed_token
            )
            res = {
                "compressed_prompt": "\n\n".join(compressed_context),
                #"compressed_prompt": " ".join(compressed_context),
                #"compressed_prompt_list": compressed_context,
                "origin_tokens": n_original_token,
                "compressed_tokens": n_compressed_token,
                "ratio": f"{ratio:.1f}x",
                "rate": f"{1 / ratio * 100:.1f}%",
                "saving": f", Saving ${saving:.1f} in GPT-4.",
            }
            #print('res: ', res)

            if return_word_label:       # Nếu trả về label word (default=False)
                words = []
                labels = []
                j = 0
                for i in range(len(context)):
                    if context_label[i]:
                        words.extend(word_list[j])
                        labels.extend(word_label_list[j])
                        j += 1
                    else:
                        words.extend(context_words[i])
                        labels.extend([0] * len(context_words[i]))
                word_label_lines = word_sep.join(       # join theo word_sep
                    [f"{word}{label_sep}{label}" for word, label in zip(words, labels)]
                )
                res["fn_labeled_original_prompt"] = word_label_lines    # đánh labels từng từ
                #print('res: ', res)
            return res
        # tinh chỉnh hyperparameter 
        if target_token > 0:
            rate = min(target_token / n_original_token, 1.0)

        if use_token_level_filter:  # Chỉ Sử dụng token-level trong llmlingua2
            compressed_context, word_list, word_label_list = self.__compress(   # compress theo llmlingua2
                context_chunked,
                reduce_rate=max(0, 1 - rate),
                token_to_word=token_to_word,
                force_tokens=force_tokens,
                token_map=token_map,
                force_reserve_digit=force_reserve_digit,
                drop_consecutive=drop_consecutive,  # Whether to drop tokens which are in 'force_tokens' but appears consecutively in compressed prompt.
            )
        else:
            compressed_context, word_list, word_label_list = self.__compress(
                context_chunked,
                reduce_rate=0,
                token_to_word=token_to_word,
                force_tokens=force_tokens,
                token_map=token_map,
                force_reserve_digit=force_reserve_digit,
                drop_consecutive=drop_consecutive,
            )
        # giống phần trên
        #print('compressed_context 2: ', compressed_context)    # compress theo token-level

        n_compressed_token = 0
        for c in compressed_context:
            n_compressed_token += self.get_token_length(c, use_oai_tokenizer=True)
        saving = (n_original_token - n_compressed_token) * 0.06 / 1000
        ratio = 1 if n_compressed_token == 0 else n_original_token / n_compressed_token
        res = {
            "compressed_prompt": "\n\n".join(compressed_context),  
            #"compressed_prompt": " ".join(compressed_context),      # phân tách các context bằng "\n\n"
            #"compressed_prompt_list": compressed_context,
            "origin_tokens": n_original_token,
            "compressed_tokens": n_compressed_token,
            "ratio": f"{ratio:.1f}x",
            "rate": f"{1 / ratio * 100:.1f}%",
            "saving": f", Saving ${saving:.1f} in GPT-4.",
        }
        if return_word_label:
            words = []
            labels = []
            for w_list, l_list in zip(word_list, word_label_list):
                words.extend(w_list)
                labels.extend(l_list)

            word_label_lines = word_sep.join(
                [f"{word}{label_sep}{label}" for word, label in zip(words, labels)]
            )
            res["fn_labeled_original_prompt"] = word_label_lines
        return res

    def get_token_length(
        self,
        text: str,
        add_special_tokens: bool = True,
        use_oai_tokenizer: bool = False,
    ):
        if use_oai_tokenizer:
            return len(self.oai_tokenizer.encode(text))
        else:
            return len(
                self.tokenizer(text, add_special_tokens=add_special_tokens).input_ids
            )

    def get_prefix_length(self, prefix: str, text: str):
        possible_prefix_token = max(self.get_token_length(prefix, False) - 3, 1)
        full_input_ids = self.tokenizer(
            prefix + text[:100], add_special_tokens=False
        ).input_ids
        for i in range(possible_prefix_token, len(full_input_ids)):
            cur_prefix = self.tokenizer.decode(full_input_ids[:i])
            if cur_prefix == prefix:
                break
        assert self.tokenizer.decode(full_input_ids[i:]) == text[:100]
        return i

    def get_condition_ppl(
        self,
        text: str,
        question: str,
        condition_in_question: str = "none",
        granularity: str = "sentence",
    ):
        if condition_in_question == "none":
            return self.get_ppl(text, granularity=granularity)
        elif condition_in_question == "before":
            return self.get_ppl(
                question + text,
                granularity=granularity,
                condition_mode="after",
                condition_pos_id=self.get_token_length(question) - 1,
            )
        elif condition_in_question == "after":
            return self.get_ppl(
                text + question,
                granularity=granularity,
                condition_mode="after",
                condition_pos_id=self.get_token_length(text) - 1,
            )

    def get_dynamic_compression_ratio(
        self,
        context: list,
        target_token: float,
        iterative_size: int,
        dynamic_ratio: list,
        start: int,
        seg_info: List[List[tuple]] = None,
    ):
        def get_ratio(base: float, delta: float):
            return max(min(1, base + delta), 0)

        context_length = [self.get_token_length(ii, False) + 2 for ii in context]
        if start:
            context_length = context_length[1:]
        tau = target_token / (sum(context_length) + 1)
        res, idx, last, last_target = [], 0, 1, []
        while idx < len(context_length):
            if last + context_length[idx] >= iterative_size:
                last_target.append(
                    (iterative_size - last, get_ratio(tau, dynamic_ratio[idx]))
                )
                res.append(last_target)
                last = last + context_length[idx] - iterative_size
                if last > iterative_size:
                    k = last // iterative_size
                    res.extend(
                        [[(iterative_size, get_ratio(tau, dynamic_ratio[idx]))]] * k
                    )
                    last -= k * iterative_size

                last_target = (
                    [(last, get_ratio(tau, dynamic_ratio[idx]))] if last else []
                )
            else:
                last += context_length[idx]
                last_target.append(
                    (context_length[idx], get_ratio(tau, dynamic_ratio[idx]))
                )
            idx += 1
        if last_target:
            res.append(last_target)
        return res

    def get_structured_dynamic_compression_ratio(
        self,
        context: list,
        iterative_size: int,
        dynamic_ratio: list,
        start: int,
        seg_info: List[List[tuple]] = None,
    ):
        if start:
            pure_context = context[1:]
        else:
            pure_context = context
        global_dynamic_rate, global_dynamic_compress, segments = [], [], []
        for context_idx, text in enumerate(pure_context):
            text_seen = 0
            for seg_idx, (seg_len, seg_rate, seg_compress) in enumerate(
                seg_info[context_idx]
            ):
                seg_text = text[text_seen : text_seen + seg_len]
                if (
                    seg_idx == len(seg_info[context_idx]) - 1
                    and context_idx != len(pure_context) - 1
                ):
                    seg_text += "\n\n"
                segments.append(seg_text)
                if seg_compress:
                    global_dynamic_rate.append(seg_rate)
                else:
                    global_dynamic_rate.append(1.0)
                global_dynamic_compress.append(seg_compress)
                text_seen += seg_len
        origin_text = "\n\n".join(pure_context)
        assert len("".join(segments)) == len(origin_text)
        assert len(segments) == len(global_dynamic_rate) == len(global_dynamic_compress)

        text_input_ids = self.tokenizer(
            "\n\n".join(context), add_special_tokens=False
        ).input_ids[start:]
        assert self.tokenizer.decode(text_input_ids) == origin_text
        dynamic_compression_ratio = self.token_segment(
            text_input_ids,
            iterative_size,
            segments,
            global_dynamic_rate,
            global_dynamic_compress,
        )
        return dynamic_compression_ratio

    def token_segment(
        self,
        text_input_ids: List[int],
        iterative_size: int,
        segments: List[str],
        global_dynamic_rate: List[float],
        global_dynamic_compress: List[bool],
    ):
        decode_window = 3
        seg_idx, seg_seen, token_seen_num, last_rate = 0, 0, 0, -1
        dynamic_compression_rate, local_compresssion_rate = [], []
        for i in range(len(text_input_ids)):
            if i < decode_window:
                id_pre, id_cur = text_input_ids[:i], text_input_ids[: i + 1]
            else:
                id_pre, id_cur = (
                    text_input_ids[i - decode_window + 1 : i],
                    text_input_ids[i - decode_window + 1 : i + 1],
                )
            cur_word = self.tokenizer.decode(id_cur)[
                len(self.tokenizer.decode(id_pre)) :
            ]
            cur_word_len = len(cur_word)
            if cur_word_len and cur_word_len >= len(segments[seg_idx]) - seg_seen:
                possible_rate, possible_compress = [], []
                while (
                    cur_word_len and cur_word_len >= len(segments[seg_idx]) - seg_seen
                ):
                    possible_rate.append(global_dynamic_rate[seg_idx])
                    possible_compress.append(global_dynamic_compress[seg_idx])
                    cur_word_len -= len(segments[seg_idx]) - seg_seen
                    seg_idx += 1
                    seg_seen = 0
                if cur_word_len:
                    possible_rate.append(global_dynamic_rate[seg_idx])
                    possible_compress.append(global_dynamic_compress[seg_idx])
                new_rate = 1.0 if False in possible_compress else min(possible_rate)
            else:
                new_rate = global_dynamic_rate[seg_idx]
            if new_rate != last_rate and i - token_seen_num:
                local_compresssion_rate.append((i - token_seen_num, last_rate))
                token_seen_num = i
            last_rate = new_rate
            seg_seen += cur_word_len
            if (i + 1) % iterative_size == 0:
                if token_seen_num != i + 1:
                    local_compresssion_rate.append((i + 1 - token_seen_num, last_rate))
                    token_seen_num = i + 1
                dynamic_compression_rate.append(local_compresssion_rate[:])
                local_compresssion_rate = []
        if token_seen_num != len(text_input_ids):
            local_compresssion_rate.append(
                (len(text_input_ids) - token_seen_num, last_rate)
            )
        if local_compresssion_rate != []:
            dynamic_compression_rate.append(local_compresssion_rate[:])
        return dynamic_compression_rate

    def control_context_budget(
        self,
        context: List[str],
        context_tokens_length: List[int],
        target_token: float,
        force_context_ids: List[int] = None,
        force_context_number: int = None,
        question: str = "",
        condition_in_question: str = "none",
        reorder_context: str = "original",
        dynamic_context_compression_ratio: float = 0.0,
        rank_method: str = "longllmlingua",
        context_budget: str = "+100",
        context_segs: List[List[str]] = None,
        context_segs_rate: List[List[float]] = None,
        context_segs_compress: List[List[bool]] = None,
    ):
        demostrations_sort = self.get_rank_results(
            context,
            question,
            rank_method,
            condition_in_question,
            context_tokens_length,
        )

        if target_token < 0:
            target_token = 100
        target_token = eval("target_token" + context_budget)
        res = []
        used = force_context_ids if force_context_ids is not None else []
        if context_segs is not None:
            for idx, _ in enumerate(context):
                if False in context_segs_compress[idx]:
                    used.append(idx)

        self.context_idxs.append([x for idx, (x, _) in enumerate(demostrations_sort)])
        for idx, _ in demostrations_sort:
            if idx >= len(context_tokens_length):
                continue
            target_token -= context_tokens_length[idx]
            if idx not in used:
                used.append(idx)
            if target_token < 0 or (
                force_context_number is not None and len(res) >= force_context_number
            ):
                break
        original_used = used
        if reorder_context == "original":
            used = sorted(used)
        elif reorder_context == "two_stage":
            l, r = [_ for idx, _ in enumerate(used) if idx % 2 == 0], [
                _ for idx, _ in enumerate(used) if idx % 2 == 1
            ]
            used = l + r[::-1]

        if dynamic_context_compression_ratio > 0:
            N = len(used)
            dynamic_ratio = [
                i * (abs(dynamic_context_compression_ratio) / (N - 1)) if N > 1 else 0
                for i in range(-(N - 1), N, 2)
            ][::-1]
            dynamic_ratio_map = {i: j for i, j in zip(original_used, dynamic_ratio)}
            dynamic_ratio = [dynamic_ratio_map[i] for i in used]
        else:
            dynamic_ratio = [0.0] * len(used)

        res = [context[idx] for idx in used if idx < len(context)]
        return res, dynamic_ratio, used

    def control_sentence_budget(
        self,
        context: List[str],
        target_token: float,
        keep_first_sentence: int = 0,
        keep_last_sentence: int = 0,
        keep_sentence_number: int = 0,
        high_priority_bonus: int = 100,
        token_budget_ratio: float = 1.4,
        question: str = "",
        condition_in_question: str = "none",
        rank_method: str = "longllmlingua",
        context_segs: List[List[str]] = None,
        context_segs_rate: List[List[float]] = None,
        context_segs_compress: List[List[bool]] = None,
    ):
        def keep_sentence(dem_idx: int, sent_keep: int):
            idxs = sorted(dem_g[dem_idx], key=lambda x: sentence_ppl[x])[:sent_keep]
            for idx in idxs:
                sentence_ppl[idx] += high_priority_bonus

        def sync_sentence(sentences, text):
            seen_text = 0
            sentence_num = len(sentences)
            new_sentences = []
            for i, s in enumerate(sentences):
                assert s == text[seen_text : seen_text + len(s)]
                if i == sentence_num - 1:
                    new_sentences.append(text[seen_text:])
                    break
                next_sentence_start = text.find(
                    sentences[i + 1][:5], seen_text + len(s)
                )
                new_sentences.append(text[seen_text:next_sentence_start])
                seen_text = next_sentence_start
            assert "".join(new_sentences) == text
            return new_sentences

        sentences = [nltk.sent_tokenize(c) for c in context]
        sentences = [sync_sentence(s, c) for s, c in zip(sentences, context)]
        dem_g, s2de, idx = defaultdict(set), defaultdict(int), 0
        for idx_d, s in enumerate(sentences):
            for _ in s:
                dem_g[idx_d].add(idx)
                s2de[idx] = idx_d
                idx += 1

        if context_segs is not None:
            sen2seg_ratio = {}
            idx = 0
            for idx_d, sentences_each_context in enumerate(sentences):
                segments_length = [len(s) for s in context_segs[idx_d]]
                seg_idx, cur_seg_seen = 0, 0
                for sentence in sentences_each_context:
                    sentence_seg_ratio = []
                    remain = len(sentence)
                    while remain:
                        if segments_length[seg_idx] - cur_seg_seen <= remain:
                            new_seg_len = segments_length[seg_idx] - cur_seg_seen
                            sentence_seg_ratio.append(
                                (
                                    new_seg_len,
                                    context_segs_rate[idx_d][seg_idx],
                                    context_segs_compress[idx_d][seg_idx],
                                )
                            )
                            seg_idx += 1
                            cur_seg_seen = 0
                            remain -= new_seg_len
                        else:
                            sentence_seg_ratio.append(
                                (
                                    remain,
                                    context_segs_rate[idx_d][seg_idx],
                                    context_segs_compress[idx_d][seg_idx],
                                )
                            )
                            cur_seg_seen += remain
                            remain = 0
                    sen2seg_ratio[idx] = sentence_seg_ratio
                    idx += 1

        context_sentences = [s for ii in sentences for s in ii]
        sentence_tokens_length = [
            self.get_token_length(sentence) for sentence in context_sentences
        ]
        N = len(context_sentences)
        flags = list(range(len(context_sentences)))
        if len(sentence_tokens_length) == 1:
            segments_info = []
            if context_segs is not None:
                segments_info.append(sen2seg_ratio[0])
            return context, segments_info
        if rank_method == "longllmlingua":
            sentence_ppl = [
                self.get_condition_ppl(sentence, question, condition_in_question)
                .cpu()
                .numpy()
                .item()
                for sentence in context_sentences
            ]
            if keep_first_sentence:
                sentence_ppl[:keep_first_sentence] = [
                    ii + high_priority_bonus
                    for ii in sentence_ppl[:keep_first_sentence]
                ]
            if keep_last_sentence:
                sentence_ppl[-keep_last_sentence:] = [
                    ii + high_priority_bonus
                    for ii in sentence_ppl[-keep_last_sentence:]
                ]
            if keep_sentence_number:
                for dem_idx in range(len(sentences)):
                    keep_sentence(dem_idx, keep_sentence_number)
            sort_direct = -1 if condition_in_question == "none" else 1
            sent_sort = sorted(
                enumerate(sentence_ppl), key=lambda x: sort_direct * x[1]
            )
        else:
            sent_sort = self.get_rank_results(
                context_sentences,
                question,
                rank_method,
                condition_in_question,
                [0] * len(context_sentences),
            )

        sentence_flags = [False] * N
        if target_token < 0:
            target_token = 100
        target_token *= token_budget_ratio
        res = []
        for idx, _ in sent_sort:
            idx = flags[idx]
            target_token -= sentence_tokens_length[idx]
            sentence_flags[idx] = True
            if target_token < 0:
                break

        if context_segs is not None:
            for idx in range(N):
                preserved = [sen_seg_info[2] for sen_seg_info in sen2seg_ratio[idx]]
                if False in preserved:
                    sentence_flags[idx] = True

        idx = 0
        res = []
        new_segments_info = []
        for s in sentences:
            tmp = [jj for ii, jj in enumerate(s) if sentence_flags[idx + ii]]
            res.append("".join(tmp))
            if context_segs is not None:
                segment_ratio = []
                for ii in range(len(s)):
                    if sentence_flags[idx + ii]:
                        segment_ratio.extend(sen2seg_ratio[idx + ii])
                new_segments_info.append(segment_ratio)
            idx += len(s)
        return res, new_segments_info

    def get_compressed_input(
        self,
        loss,
        input_ids,
        attention_mask,
        end=200,
        iterative_size=200,
        threshold=0.5,
        keep_flag=None,
        split_token_id: int = 13,
        start: int = 0,
        self_loss=None,
        self_input_ids=None,
        self_attention_mask=None,
    ):
        if self_loss is not None:
            need_idx = torch.concat(
                [
                    loss[:start] > 0,
                    self_loss[: loss[start:].shape[0]] - loss[start:] > threshold,
                    loss[:1] > 0,
                ]
            )
        else:
            need_idx = torch.concat([loss > threshold, loss[:1] > 0])
        need_idx[end:] = 1
        need_idx[: end - iterative_size] = 1
        loss = loss[need_idx[:-1]]
        if self_loss is not None:
            if need_idx.shape[0] < self_loss.shape[0] + start + 1:
                need_idx = torch.cat(
                    [
                        need_idx,
                        torch.ones(
                            self_loss.shape[0] - need_idx.shape[0] + start + 1,
                            dtype=torch.bool,
                        ).to(need_idx.device),
                    ]
                )
            self_loss = self_loss[need_idx[start:-1]]

        if need_idx.shape[0] < input_ids.shape[1]:
            need_idx = torch.cat(
                [
                    need_idx,
                    torch.ones(
                        input_ids.shape[1] - need_idx.shape[0], dtype=torch.bool
                    ).to(need_idx.device),
                ]
            )
        elif need_idx.shape[0] > input_ids.shape[1]:
            need_idx = need_idx[: input_ids.shape[1]]

        if keep_flag is not None:
            need_idx[keep_flag == 1] = 1
        last = -1
        if keep_flag is not None:
            for ii in range(max(0, end - iterative_size), end):
                if need_idx[ii] != 1:
                    continue
                now = input_ids[0][ii].detach().cpu().item()
                if (
                    now == split_token_id
                    and last == split_token_id
                    and keep_flag[ii].detach().cpu().item() == 0
                ):
                    need_idx[ii] = 0
                else:
                    last = now
        compressed_input_ids = input_ids[attention_mask == 1][need_idx].unsqueeze(0)
        compressed_attention_mask = attention_mask[attention_mask == 1][
            need_idx
        ].unsqueeze(0)

        if self_loss is not None:
            self_compressed_input_ids = self_input_ids[self_attention_mask == 1][
                need_idx[start:]
            ].unsqueeze(0)
            self_compressed_attention_mask = self_attention_mask[
                self_attention_mask == 1
            ][need_idx[start:]].unsqueeze(0)
        else:
            self_compressed_input_ids, self_compressed_attention_mask = None, None
        if keep_flag is not None:
            if len(keep_flag) > len(need_idx):
                keep_flag = torch.cat(
                    [
                        keep_flag[:start],
                        keep_flag[start : len(need_idx) + start][need_idx],
                        keep_flag[start + len(need_idx) :],
                    ]
                )
            else:
                keep_flag = keep_flag[need_idx]
        end -= (need_idx[:end] == 0).sum()
        return (
            compressed_input_ids,
            compressed_attention_mask,
            keep_flag,
            end,
            loss,
            self_loss,
            self_compressed_input_ids,
            self_compressed_attention_mask,
        )

    def get_estimate_threshold_base_distribution(
        self, ppl, ratio: float, condition_flag: bool = False
    ):
        if ratio == 1.0:
            return float("-inf")
        ppl = ppl[ppl != 10000]
        target_token = max(0, min(len(ppl) - 1, int(len(ppl) * ratio) - 1))
        return (
            ppl.sort(descending=not condition_flag)
            .values[target_token]
            .detach()
            .cpu()
            .item()
        )

    def iterative_compress_prompt(
        self,
        context: List[str],
        target_token: float,
        iterative_size: int = 200,
        keep_split: bool = False,
        split_token_id: int = 13,
        start: int = 0,
        dynamic_ratio: list = None,
        condition_compare: bool = False,
        segments_info: List[List[tuple]] = None,
    ):
        if segments_info is None or segments_info == []:
            iterative_ratios = self.get_dynamic_compression_ratio( # Các tỉ số nén khác nhau
                context, target_token, iterative_size, dynamic_ratio, start
            )
        else:
            iterative_ratios = self.get_structured_dynamic_compression_ratio(
                context, iterative_size, dynamic_ratio, start, segments_info
            )
        context = "\n\n".join(context)
        tokenized_text = self.tokenizer(
            context, return_tensors="pt", add_special_tokens=False
        )
        input_ids = tokenized_text["input_ids"].to(self.device)
        attention_mask = tokenized_text["attention_mask"].to(self.device)

        N = (attention_mask == 1).sum()
        compressed_input_ids, compressed_attention_mask = input_ids, attention_mask
        if condition_compare:
            self_input_ids, self_attention_mask = (
                input_ids[:, start:],
                attention_mask[:, start:],
            )
            self_compressed_input_ids, self_compressed_attention_mask = (
                self_input_ids,
                self_attention_mask,
            )

        end = min(iterative_size + start, compressed_input_ids.shape[1])
        threshold, keep_flag = None, None
        if keep_split:
            input_ids_numpy = input_ids.cpu().detach().numpy()[0]
            N = len(input_ids_numpy)
            keep_flag = [
                int(
                    (
                        ii > 0
                        and input_ids_numpy[ii] == split_token_id
                        and input_ids_numpy[ii - 1] == split_token_id
                    )
                    or (
                        ii < N - 1
                        and input_ids_numpy[ii] == split_token_id
                        and input_ids_numpy[ii + 1] == split_token_id
                    )
                )
                for ii in range(N)
            ]
            keep_flag = torch.tensor(keep_flag).to(self.device)
        past_key_values, past_loss, ready_end = None, None, 0
        self_past_key_values, self_past_loss, self_ready_end = None, None, 0
        pop_compressed_input_ids, pop_self_compressed_input_ids = None, None
        idx = 0
        while end <= compressed_input_ids.shape[1]:
            if end > self.max_position_embeddings and past_key_values is not None:
                # KV-Cache Compression
                e, s = end - self.max_position_embeddings, min(
                    self.cache_bos_num + start, self.max_position_embeddings
                )
                if pop_compressed_input_ids is None:
                    pop_compressed_input_ids = compressed_input_ids[:, :e]
                else:
                    pop_compressed_input_ids = torch.cat(
                        [pop_compressed_input_ids, compressed_input_ids[:, :e]], dim=-1
                    )
                compressed_input_ids = compressed_input_ids[:, e:]
                compressed_attention_mask = compressed_attention_mask[:, e:]
                past_key_values = [
                    [
                        torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
                        torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
                    ]
                    for k, v in past_key_values
                ]
                if keep_flag is not None:
                    keep_flag = keep_flag[e:]
                end, ready_end = end - e, ready_end - e
                if condition_compare:
                    s = min(s, self_past_key_values[0][0].shape[2] - e)
                    self_ready_end -= e
                    if pop_self_compressed_input_ids is None:
                        pop_self_compressed_input_ids = self_compressed_input_ids[:, :e]
                    else:
                        pop_self_compressed_input_ids = torch.cat(
                            [
                                pop_self_compressed_input_ids,
                                self_compressed_input_ids[:, :e],
                            ],
                            dim=-1,
                        )
                    self_compressed_input_ids = self_compressed_input_ids[:, e:]
                    self_compressed_attention_mask = self_compressed_attention_mask[
                        :, e:
                    ]
                    self_past_key_values = [
                        [
                            torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
                            torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
                        ]
                        for k, v in self_past_key_values
                    ]

            loss, past_key_values = self.get_ppl(
                "",
                "token",
                compressed_input_ids,
                compressed_attention_mask,
                past_key_values=past_key_values,
                return_kv=True,
                end=end if idx else None,
            )
            if loss.shape[0] == 0:
                break
            if past_loss is not None:
                if end - 1 > len(past_loss):
                    past_loss = torch.cat(
                        [past_loss, torch.zeros_like(loss)[: end - 1 - len(past_loss)]]
                    )
                past_loss[ready_end : end - 1] = loss
                loss = past_loss
            else:
                past_loss = loss
            if idx:
                past_key_values = [
                    [k[:, :, : end - iterative_size], v[:, :, : end - iterative_size]]
                    for k, v in past_key_values
                ]
            else:
                past_key_values = None

            if condition_compare:
                self_loss, self_past_key_values = self.get_ppl(
                    "",
                    "token",
                    self_compressed_input_ids,
                    self_compressed_attention_mask,
                    past_key_values=self_past_key_values,
                    return_kv=True,
                    end=end - start if idx else None,
                )
                if self_past_loss is not None:
                    if end - start - 1 > len(self_past_loss):
                        self_past_loss = torch.cat(
                            [
                                self_past_loss,
                                torch.zeros_like(self_loss)[
                                    : end - 1 - start - len(self_past_loss)
                                ],
                            ]
                        )
                    self_past_loss[self_ready_end : end - start - 1] = self_loss
                    self_loss = self_past_loss
                else:
                    self_past_loss = self_loss
                if idx:
                    self_past_key_values = [
                        [
                            k[:, :, : end - iterative_size - start],
                            v[:, :, : end - iterative_size - start],
                        ]
                        for k, v in self_past_key_values
                    ]
                else:
                    self_past_key_values = None

                self_ready_end = (
                    end - start - iterative_size if not (start and idx == 0) else 0
                )
            ready_end = end - iterative_size if not (start and idx == 0) else 0

            for delta_end, ratio in iterative_ratios[idx]:
                loss = past_loss
                if condition_compare:
                    self_loss = self_past_loss
                    threshold = self.get_estimate_threshold_base_distribution(
                        self_loss[: loss[start:].shape[0]] - loss[start:], ratio, False
                    )
                else:
                    threshold = self.get_estimate_threshold_base_distribution(
                        loss, ratio, False
                    )

                (
                    compressed_input_ids,
                    compressed_attention_mask,
                    keep_flag,
                    end,
                    past_loss,
                    self_past_loss,
                    self_compressed_input_ids,
                    self_compressed_attention_mask,
                ) = self.get_compressed_input(
                    loss,
                    compressed_input_ids,
                    compressed_attention_mask,
                    end - iterative_size + delta_end,
                    iterative_size=delta_end,
                    threshold=threshold,
                    keep_flag=keep_flag,
                    split_token_id=split_token_id,
                    start=start,
                    self_loss=self_loss if condition_compare else None,
                    self_input_ids=(
                        self_compressed_input_ids if condition_compare else None
                    ),
                    self_attention_mask=(
                        self_compressed_attention_mask if condition_compare else None
                    ),
                )
                end += iterative_size
            idx += 1
        if pop_compressed_input_ids is not None:
            compressed_input_ids = torch.cat(
                [pop_compressed_input_ids, compressed_input_ids], dim=-1
            )
        return compressed_input_ids[:, start:], compressed_attention_mask[:, start:]

    def recover(
        self,
        original_prompt: str,
        compressed_prompt: str,
        response: str,
    ):
        def match_from_compressed(response_word):
            response_input_ids = self.tokenizer(
                response_word, add_special_tokens=False
            )["input_ids"]  # tokenize response compress
            # response_c là mảng các index tương ứng của response compress llm match với original prompt
            response_set, response_c = set(response_input_ids), defaultdict(list)   # Loại bỏ các từ lặp lại nhiều lần
            for idx in range(M):    # M = len word original prompt
                if original_input_ids[idx] in response_set: # Nếu word trong original prompt nằm trong response compress llm
                    response_c[original_input_ids[idx]].append(idx)
            res, res_min, res_c = None, float("inf"), 1
            n = len(response_input_ids)
            for l in response_c[response_input_ids[0]]:
                x, y, c = 0, l, 1
                for x in range(1, n):
                    idx = bisect.bisect_right(response_c[response_input_ids[x]], y)
                    if (
                        idx >= len(response_c[response_input_ids[x]])
                        or response_c[response_input_ids[x]][idx] - y > 10
                    ):
                        continue
                    c += 1
                    y = response_c[response_input_ids[x]][idx]
                if c > res_c:
                    res_c = c
                    res_min = y - l + 1
                    res = (l, y + 1)
                elif c == res_c and y - l + 1 < res_min:
                    res_min = y - l + 1
                    res = (l, y + 1)

            if res is None:
                return response_word
            # while l > 0 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
            #     l -= 1
            # while r < M - 1 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
            #     l -= 1
            return self.tokenizer.decode(original_input_ids[res[0] : res[1]])   # các word trong original prompt ko có trong compress prompt

        response_words = response.split(" ")    # split word trong response compress

        original_input_ids = self.tokenizer(original_prompt, add_special_tokens=False)[
            "input_ids"
        ]   # tokenize original prompt thành input_ids
        N, M = len(response_words), len(original_input_ids) # len word response compress, len word original prompt
        recovered_response_words = []
        l = 0
        while l < N:
            if response_words[l] not in compressed_prompt:  # Nếu word trong response compress ko có trong compressed_prompt thì thêm vào output
                recovered_response_words.append(response_words[l])
                l += 1
                continue
            r = l
            while (
                r + 1 < N and " ".join(response_words[l : r + 2]) in compressed_prompt
            ):
                r += 1

            match_words = match_from_compressed(" ".join(response_words[l : r + 1]))
            recovered_response_words.append(match_words)    # Thêm các word được match tương ứng từ response llm compress và original prompt vào trong output
            l = r + 1
        return " ".join(recovered_response_words)

    def get_rank_results(
        self,
        context: list,
        question: str,
        rank_method: str,
        condition_in_question: str,
        context_tokens_length: list,
    ):
        def get_distance_bm25(corpus, query):
            from rank_bm25 import BM25Okapi

            tokenized_corpus = [doc.split(" ") for doc in corpus]
            bm25 = BM25Okapi(tokenized_corpus)
            tokenized_query = query.split(" ")
            doc_scores = bm25.get_scores(tokenized_query)
            idx = [(ii, 0) for ii in (-doc_scores).argsort()]
            return idx

        def get_distance_gzip(corpus, query):
            def get_score(x, y):
                cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
                cxy = len(gzip.compress(f"{x} {y}".encode()))
                return (cxy - min(cx, cy)) / max(cx, cy)

            import gzip

            doc_scores = [get_score(doc, query) for doc in corpus]
            idx = [(ii, 0) for ii in np.argsort(doc_scores)]
            return idx

        def get_distance_sentbert(corpus, query):
            from sentence_transformers import SentenceTransformer, util

            if self.retrieval_model is None or self.retrieval_model_name != rank_method:
                self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
                self.retrieval_model_name = rank_method
            doc_embeds = self.retrieval_model.encode(corpus)
            query = self.retrieval_model.encode(query)
            doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
            idx = [(ii, 0) for ii in np.argsort(doc_scores)]
            return idx

        def get_distance_openai(corpus, query):
            import openai
            from sentence_transformers import util

            openai.api_key = self.open_api_config.get("api_key", "")
            openai.api_base = self.open_api_config.get(
                "api_base", "https://api.openai.com/v1"
            )
            openai.api_type = self.open_api_config.get("api_type", "open_ai")
            openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
            engine = self.open_api_config.get("engine", "text-embedding-ada-002")

            def get_embed(text):
                return openai.Embedding.create(
                    input=[text.replace("\n", " ")], engine=engine
                )["data"][0]["embedding"]

            doc_embeds = [get_embed(i) for i in corpus]
            query = get_embed(query)
            doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
            idx = [(ii, 0) for ii in np.argsort(doc_scores)]
            return idx

        def get_distance_sentbert_bge(corpus, query):
            from sentence_transformers import SentenceTransformer, util

            if self.retrieval_model is None or self.retrieval_model_name != rank_method:
                self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
                self.retrieval_model_name = rank_method
            doc_embeds = self.retrieval_model.encode(
                [i for i in corpus], normalize_embeddings=True
            )
            query = self.retrieval_model.encode(query, normalize_embeddings=True)
            doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
            idx = [(ii, 0) for ii in np.argsort(doc_scores)]
            return idx

        def get_distance_bge_ranker(corpus, query):
            from transformers import AutoModelForSequenceClassification, AutoTokenizer

            pairs = [[i, query] for i in corpus]
            if self.retrieval_model is None or self.retrieval_model_name != rank_method:
                tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
                model = (
                    AutoModelForSequenceClassification.from_pretrained(
                        "BAAI/bge-reranker-large"
                    )
                    .eval()
                    .to(self.device)
                )
                self.retrieval_model = [tokenizer, model]
                self.retrieval_model_name = rank_method
            with torch.no_grad():
                inputs = self.retrieval_model[0](
                    pairs,
                    padding=True,
                    truncation=True,
                    return_tensors="pt",
                    max_length=512,
                ).to(self.device)
                scores = (
                    self.retrieval_model[1](**inputs, return_dict=True)
                    .logits.view(
                        -1,
                    )
                    .float()
                )
            idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
            return idx

        def get_distance_bge_llmembedder(corpus, query):
            from transformers import AutoModel, AutoTokenizer

            if self.retrieval_model is None or self.retrieval_model_name != rank_method:
                tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
                model = (
                    AutoModel.from_pretrained("BAAI/llm-embedder")
                    .eval()
                    .to(self.device)
                )
                self.retrieval_model = [tokenizer, model]
                self.retrieval_model_name = rank_method

            instruction_qa_query = (
                "Represent this query for retrieving relevant documents: "
            )
            instruction_qa_key = "Represent this document for retrieval: "
            queries = [instruction_qa_query + query for _ in corpus]
            keys = [instruction_qa_key + key for key in corpus]
            with torch.no_grad():
                query_inputs = self.retrieval_model[0](
                    queries,
                    padding=True,
                    truncation=True,
                    return_tensors="pt",
                    max_length=512,
                ).to(self.device)
                key_inputs = self.retrieval_model[0](
                    keys,
                    padding=True,
                    truncation=True,
                    return_tensors="pt",
                    max_length=512,
                ).to(self.device)
                query_outputs = self.retrieval_model[1](**query_inputs)
                key_outputs = self.retrieval_model[1](**key_inputs)
                # CLS pooling
                query_embeddings = query_outputs.last_hidden_state[:, 0]
                key_embeddings = key_outputs.last_hidden_state[:, 0]
                # Normalize
                query_embeddings = torch.nn.functional.normalize(
                    query_embeddings, p=2, dim=1
                )
                key_embeddings = torch.nn.functional.normalize(
                    key_embeddings, p=2, dim=1
                )
                similarity = query_embeddings @ key_embeddings.T
            idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
            return idx

        def get_distance_jinza(corpus, query):
            from numpy.linalg import norm
            from transformers import AutoModel

            def cos_sim(a, b):
                return (a @ b.T) / (norm(a) * norm(b))

            if self.retrieval_model is None or self.retrieval_model_name != rank_method:
                model = (
                    AutoModel.from_pretrained(
                        "jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
                    )
                    .eval()
                    .to(self.device)
                )
                self.retrieval_model = model
                self.retrieval_model_name = rank_method

            doc_embeds = self.retrieval_model.encode(corpus)
            query = self.retrieval_model.encode(query)
            doc_scores = cos_sim(doc_embeds, query)
            idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
            return idx

        def get_distance_voyageai(corpus, query):
            import voyageai
            from sentence_transformers import util

            voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")

            def get_embed(text):
                return voyageai.get_embedding(text, model="voyage-01")

            doc_embeds = [get_embed(i) for i in corpus]
            query = get_embed(query)
            doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
            idx = [(ii, 0) for ii in np.argsort(doc_scores)]
            return idx

        def get_distance_cohere(corpus, query):
            import cohere

            api_key = self.open_api_config.get("cohere_api_key", "")
            co = cohere.Client(api_key)
            results = co.rerank(
                model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
            )
            c_map = {jj: ii for ii, jj in enumerate(corpus)}
            doc_rank = [c_map[ii.document["text"]] for ii in results]
            idx = [(ii, 0) for ii in doc_rank]
            return idx

        def get_distance_longllmlingua(corpus, query):
            context_ppl = [
                self.get_condition_ppl(
                    d,
                    query
                    + " We can get the answer to this question in the given documents.",
                    condition_in_question,
                )
                - dl * 2 / 250 * 0
                for d, dl in zip(corpus, context_tokens_length)
            ]
            sort_direct = -1 if condition_in_question == "none" else 1
            ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
            return ys

        method = None
        if rank_method == "bm25":
            method = get_distance_bm25
        elif rank_method == "gzip":
            method = get_distance_gzip
        elif rank_method == "sentbert":
            method = get_distance_sentbert
        elif rank_method == "openai":
            method = get_distance_openai
        elif rank_method in ["longllmlingua", "llmlingua"]:
            method = get_distance_longllmlingua
        elif rank_method == "bge":
            method = get_distance_sentbert_bge
        elif rank_method == "bge_reranker":
            method = get_distance_bge_ranker
        elif rank_method == "bge_llmembedder":
            method = get_distance_bge_llmembedder
        elif rank_method == "jinza":
            method = get_distance_jinza
        elif rank_method == "voyageai":
            method = get_distance_voyageai
        elif rank_method == "cohere":
            method = get_distance_cohere
        return method(context, question)

    def segment_structured_context(
        self,
        context: List[str],
        global_rate: float,
    ):
        new_context, context_segs, context_segs_rate, context_segs_compress = (
            [],
            [],
            [],
            [],
        )
        for text in context:
            if not text.startswith("<llmlingua"):
                text = "<llmlingua>" + text
            if not text.endswith("</llmlingua>"):
                text = text + "</llmlingua>"

            # Regular expression to match <llmlingua, rate=x, compress=y>content</llmlingua>, allowing rate and compress in any order
            pattern = r"<llmlingua\s*(?:,\s*rate\s*=\s*([\d\.]+))?\s*(?:,\s*compress\s*=\s*(True|False))?\s*(?:,\s*rate\s*=\s*([\d\.]+))?\s*(?:,\s*compress\s*=\s*(True|False))?\s*>([^<]+)</llmlingua>"
            matches = re.findall(pattern, text)

            # Extracting segment contents
            segments = [match[4] for match in matches]

            # Extracting rate and compress, considering their possible positions
            segs_rate = [
                float(match[0]) if match[0] else (float(match[2]) if match[2] else None)
                for match in matches
            ]
            segs_compress = [
                (
                    match[1] == "True"
                    if match[1]
                    else (match[3] == "True" if match[3] else None)
                )
                for match in matches
            ]

            segs_compress = [
                compress if compress is not None else True for compress in segs_compress
            ]
            segs_rate = [
                rate if rate else (global_rate if compress else 1.0)
                for rate, compress in zip(segs_rate, segs_compress)
            ]
            assert (
                len(segments) == len(segs_rate) == len(segs_compress)
            ), "The number of segments, rates, and compress flags should be the same."
            assert all(
                seg_rate <= 1.0 for seg_rate in segs_rate
            ), "Error: 'rate' must not exceed 1.0. The value of 'rate' indicates compression rate and must be within the range [0, 1]."

            new_context.append("".join(segments))
            context_segs.append(segments)
            context_segs_rate.append(segs_rate)
            context_segs_compress.append(segs_compress)

        return new_context, context_segs, context_segs_rate, context_segs_compress

    def concate_segment_info(
        self,
        segment_info: List[List[tuple]],
    ):
        new_segment_info = []
        for i, (seg_len, seg_ratio, seg_compress) in enumerate(segment_info):
            if (
                new_segment_info
                and new_segment_info[-1][1] == seg_ratio
                and new_segment_info[-1][2] == seg_compress
            ):
                new_segment_info[-1] = (
                    new_segment_info[-1][0] + seg_len,
                    seg_ratio,
                    seg_compress,
                )
            else:
                new_segment_info.append((seg_len, seg_ratio, seg_compress))
        return new_segment_info

    def __get_context_prob(     # Sử dụng trong context-level
        self,
        context_list: list,
        token_to_word="mean",   # mode to convert
        force_tokens: List[str] = [],
        token_map: dict = {},
        force_reserve_digit: bool = False,
    ):
        chunk_list = []
        for chunks in context_list:
            for c in chunks:
                chunk_list.append(c)    # list chunk

        dataset = TokenClfDataset(
            chunk_list, tokenizer=self.tokenizer, max_len=self.max_seq_len
        )
        dataloader = DataLoader(
            dataset, batch_size=self.max_batch_size, shuffle=False, drop_last=False
        )

        chunk_probs = []
        chunk_words = []
        with torch.no_grad():   # inference
            for batch in dataloader:
                ids = batch["ids"].to(self.device, dtype=torch.long)
                mask = batch["mask"].to(self.device, dtype=torch.long) == 1

                outputs = self.model(input_ids=ids, attention_mask=mask)
                loss, logits = outputs.loss, outputs.logits
                probs = F.softmax(logits, dim=-1)

                for j in range(ids.shape[0]):
                    _probs = probs[j, :, 1]
                    _ids = ids[j]
                    _mask = mask[j]

                    active_probs = torch.masked_select(_probs, _mask)
                    #print('active_probs: ', active_probs)
                    active_ids = torch.masked_select(_ids, _mask)
                    #print('active_ids: ', active_ids)      # lst ids

                    tokens = self.tokenizer.convert_ids_to_tokens(  # chuyển ids sang tokens
                        active_ids.squeeze().tolist()
                    )
                    #print('token: ', tokens)
                    token_probs = [prob for prob in active_probs.cpu().numpy()]     # lst prob

                    (
                        words,
                        valid_token_probs,
                        valid_token_probs_no_force,
                    ) = self.__merge_token_to_word( # chuyển tokens sang words (gộp các subword thành word hoàn chỉnh)
                        tokens,
                        token_probs,
                        force_tokens=force_tokens,
                        token_map=token_map,
                        force_reserve_digit=force_reserve_digit,
                    )
                    #print('words: ', words)
                    word_probs_no_force = self.__token_prob_to_word_prob(
                        valid_token_probs_no_force, convert_mode=token_to_word
                    )
                    #print('word_probs_no_force: ', word_probs_no_force) # lst các prob

                    #if "xlm-roberta-large" in self.model_name:
                    if "xlm-roberta" in self.model_name:
                        for i in range(len(words)):
                            words[i] = words[i].lstrip("▁")
                    elif "phobert" in self.model_name:
                    #if "phobert" in self.model_name:
                        for i in range(len(words)):
                            words[i] = words[i].lstrip("▁")
                    # Append words, probs theo chunk
                    chunk_words.append(words)
                    chunk_probs.append(word_probs_no_force) 

        prev_idx = 0
        # append words, probs theo context
        context_probs = []
        context_words = []
        for chunk_list in context_list:     # list chunk context
            n_chunk = len(chunk_list)
            context_probs.append([])
            context_words.append([])
            for i in range(n_chunk):
                context_probs[-1].extend(chunk_probs[prev_idx + i])
                context_words[-1].extend(chunk_words[prev_idx + i])
            prev_idx = prev_idx + n_chunk
        context_probs = [sum(probs) / len(probs) for probs in context_probs]
        return context_probs, context_words

    # Hàm chia chunk trong llmlingua2
    def __chunk_context(self, origin_text, chunk_end_tokens):
        origin_list = []
        origin_tokens = self.tokenizer.tokenize(origin_text)
        n = len(origin_tokens)
        st = 0
        while st < n:
            if st + self.max_seq_len > n - 1:
                chunk = self.tokenizer.convert_tokens_to_string(origin_tokens[st:n])
                origin_list.append(chunk)
                break
            else:
                ed = st + self.max_seq_len
                for j in range(0, ed - st):
                    if origin_tokens[ed - j] in chunk_end_tokens:
                        ed = ed - j
                        break
                chunk = self.tokenizer.convert_tokens_to_string(
                    origin_tokens[st : ed + 1]
                )
                origin_list.append(chunk)
                st = ed + 1
        return origin_list

    def __merge_token_to_word(      # Từ tokens chuyển thành từng word
        self, tokens, token_probs, force_tokens, token_map, force_reserve_digit
    ):
        words = []
        #words = ['.']
        word_probs = []
        word_probs_no_force = []

        for token, prob in zip(tokens, token_probs):    # duyệt từng token trong một câu
            if token in self.special_tokens:
                continue
            # add a new word
            elif is_begin_of_new_word(token, self.model_name, force_tokens, token_map): # Nếu True thì mới thực hiện (trả về True)
                pure_token = get_pure_token(token, self.model_name)     # thêm nguyên từ gốc vào list
                #print('pure token 1: ', pure_token)
                prob_no_force = prob
                if pure_token in force_tokens or pure_token in set(token_map.values()):
                    prob = 1.0
                token = replace_added_token(token, token_map)   # xlm-roberta    # thay thế token
                #token = get_pure_token(token, self.model_name)  # phobert
                #print('words 1 before: ', words)
                words.append(token)
                #print('words 1 after: ', words)
                word_probs.append(
                    [
                        1.0
                        if force_reserve_digit and bool(re.search(r"\d", token))
                        else prob
                    ]
                )
                word_probs_no_force.append([prob_no_force])
            # concatenate with previous token   # False thì mới vào flow này
            else:       # phải is_begin_of_new_word phải True trước         # pure token thường là digit
                pure_token = get_pure_token(token, self.model_name) # hàm get pure token trả về token gốc (sau khi loại bỏ kí tự đặc biệt subword)
                #print('pure token 2: ', pure_token)
                #print('words 2 before: ', words) 
                words[-1] += pure_token     # thêm từ gốc vào đằng sau từ ở cuối list (thêm vào từ ko hoàn chỉnh vào cuối)
                #print('words 2 after: ', words) 
                word_probs[-1].append(
                    1.0
                    if force_reserve_digit and bool(re.search(r"\d", token))
                    else prob
                )
                word_probs_no_force[-1].append(prob_no_force)

            #break #
        #print("word: ", words)

        return words, word_probs, word_probs_no_force   # trả về các từ (subword) dưới dạng list

    def __token_prob_to_word_prob(self, token_probs, convert_mode="mean"):  # chuyển xác suất kí tự sang xác suất của từng từ
        if convert_mode == "mean":
            word_probs = [sum(p) / len(p) for p in token_probs]
        elif convert_mode == "first":
            word_probs = [p[0] for p in token_probs]
        else:
            raise NotImplementedError()

        return word_probs

    def __compress(     # compress method llmlingua2 (token level) (xử lý cả filter context level)
        self,
        context_list: list,
        reduce_rate: float = 0.5,
        token_to_word: str = "mean",
        force_tokens: List[str] = [],
        token_map: dict = {},
        force_reserve_digit: bool = False,
        drop_consecutive: bool = False,
    ):
        def split_string_to_words(input_string):
            pattern = r'\b\w+\b|[<>=/!@#$%^&*()?":{}|\\`~;_+-]'
            result = re.findall(pattern, input_string)
            return result

        if reduce_rate <= 0:        # default luôn là 0.5 (>0)
            words, word_labels = [], []
            for i in range(len(context_list)):
                chunk_list = context_list[i]        # tách thành các chunk
                chunk_words = []
                chunk_word_labels = []
                for j in range(len(chunk_list)):
                    # replace to original token
                    for ori_token, new_token in token_map.items():
                        chunk_list[j] = chunk_list[j].replace(new_token, ori_token)
                    ws = split_string_to_words(chunk_list[j])
                    chunk_words.extend(ws)
                    chunk_word_labels.extend([1 for _ in range(len(ws))])
                context_list[i] = "".join(chunk_list)
                words.append(chunk_words)
                word_labels.append(chunk_word_labels)
            return context_list, words, word_labels

        chunk_list = []
        for chunks in context_list:
            for c in chunks:
                chunk_list.append(c)    # tách thành các chunk

        dataset = TokenClfDataset(
            chunk_list, tokenizer=self.tokenizer, max_len=self.max_seq_len
        )
        dataloader = DataLoader(
            dataset, batch_size=self.max_batch_size, shuffle=False, drop_last=False
        )

        compressed_chunk_list = []
        word_list = []
        word_label_list = []
        with torch.no_grad():   # giống phần trước
            for batch in dataloader:    # phobert cần token_type_ids
                #print("batch 0: ", batch)
                #print("batch input_ids shape: ", batch["ids"].shape)
                #print("batch attention_mask shape: ", batch["mask"].shape)
                ids = batch["ids"].to(self.device, dtype=torch.long)
                mask = batch["mask"].to(self.device, dtype=torch.long) == 1

                outputs = self.model(input_ids=ids, attention_mask=mask)
                loss, logits = outputs.loss, outputs.logits
                probs = F.softmax(logits, dim=-1)

                for j in range(ids.shape[0]):
                    chunk_probs = probs[j, :, 1]
                    chunk_ids = ids[j]
                    chunk_mask = mask[j]

                    active_probs = torch.masked_select(chunk_probs, chunk_mask)
                    active_ids = torch.masked_select(chunk_ids, chunk_mask)

                    tokens = self.tokenizer.convert_ids_to_tokens(  # list các tokens
                        active_ids.squeeze().tolist()
                    )
                    token_probs = [prob for prob in active_probs.cpu().numpy()]

                    words, valid_token_probs, _ = self.__merge_token_to_word( # chuyển tokens sang words
                        tokens=tokens,
                        token_probs=token_probs,
                        force_tokens=force_tokens,
                        token_map=token_map,
                        force_reserve_digit=force_reserve_digit,
                    )
                    word_probs = self.__token_prob_to_word_prob(
                        valid_token_probs, convert_mode=token_to_word
                    )

                    if drop_consecutive: # filtering (default = False)
                        threshold = np.percentile(word_probs, int(100 * reduce_rate))
                        is_token_between = False
                        prev = None
                        for i, (word, word_prob) in enumerate(zip(words, word_probs)):
                            if word in force_tokens:
                                if is_token_between:
                                    is_token_between = False
                                elif not is_token_between and word == prev:
                                    word_probs[i] = 0.0
                                prev = word
                            else:
                                is_token_between |= word_prob > threshold
                        
                        #print('is_token_between: ', is_token_between)

                    new_token_probs = []
                    for word, word_prob in zip(words, word_probs):      # duyệt từng từ và prob tương ứng
                        num_token = len(self.oai_tokenizer.encode(word))
                        new_token_probs.extend([word_prob for _ in range(num_token)])
                    #print('new_token_probs: ', new_token_probs)
                    threshold = np.percentile(
                        new_token_probs, int(100 * reduce_rate + 1)
                    )

                    keep_words = []
                    word_labels = []
                    assert len(words) == len(word_probs)
                    for word, word_porb in zip(words, word_probs):
                        if word_porb > threshold:
                            if (
                                drop_consecutive
                                and word in force_tokens
                                and len(keep_words) > 0
                                and keep_words[-1] == word
                            ):
                                word_labels.append(0)
                            else:
                                keep_words.append(word)
                                word_labels.append(1)
                        else:
                            word_labels.append(0)

                    #print('keep_words: ', keep_words)      # Các word được giữ lại
                    #print('word_labels: ', word_labels)    # các labels tương ứng

                    keep_str = self.tokenizer.convert_tokens_to_string(keep_words)      # chuyển các token thành các string
                    #print('keep str: ', keep_str)       # Từng string context được giữ lại
                    #if "xlm-roberta-large" in self.model_name:
                    if "xlm-roberta" in self.model_name:
                        for i in range(len(words)):
                            words[i] = words[i].lstrip("▁")
                    elif "phobert" in self.model_name:
                    #if "phobert" in self.model_name:
                        for i in range(len(words)):
                            words[i] = words[i].lstrip("▁")

                    compressed_chunk_list.append(keep_str)      # append các compress chunjk trong một context dài
                    word_list.append(words[:])
                    word_label_list.append(word_labels[:])

        #print('compressed_chunk_list: ', compressed_chunk_list)
        #print('word_list: ', word_list)
        #print('word_label_list: ', word_label_list)

        compressed_context_list = []
        original_word_list = []
        original_word_label_list = []
        prev_idx = 0
        # append các chunk vào context
        for chunk_list in context_list:
            n_chunk = len(chunk_list)
            compressed_context_list.append(
                "".join(compressed_chunk_list[prev_idx : prev_idx + n_chunk])
            )
            original_word_list.append([])
            original_word_label_list.append([])
            for i in range(n_chunk):
                original_word_list[-1].extend(word_list[prev_idx + i])
                original_word_label_list[-1].extend(word_label_list[prev_idx + i])
            prev_idx = prev_idx + n_chunk

        return compressed_context_list, original_word_list, original_word_label_list