Spaces:
Runtime error
Runtime error
File size: 115,958 Bytes
26827a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 |
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import bisect
import copy
import re
import string
from collections import defaultdict
from typing import List
import nltk
import numpy as np
import tiktoken
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoModelForTokenClassification,
AutoTokenizer,
)
from core_utils_llmlingua2 import (TokenClfDataset, get_pure_token, is_begin_of_new_word, replace_added_token, seed_everything,)
#from core_utils_llmlingua2_phobert import (TokenClfDataset, get_pure_token, is_begin_of_new_word, replace_added_token, seed_everything,)
class PromptCompressor:
"""
PromptCompressor is designed for compressing prompts based on a given language model.
This class initializes with the language model and its configuration, preparing it for prompt compression tasks.
The PromptCompressor class is versatile and can be adapted for various models and specific requirements in prompt processing.
Users can specify different model names and configurations as needed for their particular use case.The architecture is
based on the paper "LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models". Jiang, Huiqiang, Qianhui Wu,
Chin-Yew Lin, Yuqing Yang, and Lili Qiu. "Llmlingua: Compressing prompts for accelerated inference of large language models."
arXiv preprint arXiv:2310.05736 (2023).
Args:
model_name (str, optional): The name of the language model to be loaded. Default is "NousResearch/Llama-2-7b-hf".
device_map (str, optional): The device to load the model onto, e.g., "cuda" for GPU. Default is "cuda".
model_config (dict, optional): A dictionary containing the configuration parameters for the model. Default is an empty dictionary.
open_api_config (dict, optional): A dictionary containing configuration for openai APIs that may be used in conjunction with the model. Default is an empty dictionary.
use_llmlingua2 (bool, optional): Whether to use llmlingua-2 compressor based on the paper
"LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression".
Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang.
"LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression". arXiv preprint arXiv:,
Default is True.
llmlingua2_config (dict, optional): A dictionary containing the configuration parameters for llmlingua-2. Default is
{
"max_batch_size": 50,
"max_force_token": 100, # max number of the tokens which will be forcely preserved
}
Example:
>>> compress_method = PromptCompressor(model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank", use_llmlingua2=True, )
>>> context = ["This is the first context sentence.", "Here is another context sentence."]
>>> result = compress_method.compress_prompt(context, use_context_level_filter=True, target_token=5)
>>> print(result["compressed_prompt"])
# This will print the compressed version of the context.
Note:
The `PromptCompressor` class requires the Hugging Face Transformers library and an appropriate environment to load and run the models.
"""
def __init__(
self,
model_name: str = "NousResearch/Llama-2-7b-hf",
device_map: str = "cuda",
model_config: dict = {},
open_api_config: dict = {},
use_llmlingua2: bool = False,
llmlingua2_config: dict = {},
):
self.model_name = model_name
self.use_llmlingua2 = use_llmlingua2
self.retrieval_model = None
self.retrieval_model_name = None
self.open_api_config = open_api_config
self.cache_bos_num = 10
self.prefix_bos_num = 100
self.oai_tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
self.load_model(model_name, device_map, model_config)
if use_llmlingua2:
self.init_llmlingua2(**llmlingua2_config)
def init_llmlingua2(
self,
max_batch_size: int = 50,
max_force_token: int = 100,
):
seed_everything(42)
self.max_batch_size = max_batch_size
self.max_seq_len = 512 # 512 (xlm-roberta) 256 (phobert)
self.max_force_token = max_force_token
self.special_tokens = set( # trả ra special tokens
[
v
for k, v in self.tokenizer.special_tokens_map.items()
if k != "additional_special_tokens"
]
)
self.added_tokens = [f"[NEW{i}]" for i in range(max_force_token)]
self.tokenizer.add_special_tokens( # Add special token in force token
{"additional_special_tokens": self.added_tokens}
)
self.model.resize_token_embeddings(len(self.tokenizer)) # Resize embedding dim
def load_model(
self, model_name: str, device_map: str = "cuda", model_config: dict = {}
):
trust_remote_code = model_config.get("trust_remote_code", True)
if "trust_remote_code" not in model_config:
model_config["trust_remote_code"] = trust_remote_code
config = AutoConfig.from_pretrained(model_name, **model_config)
tokenizer = AutoTokenizer.from_pretrained(model_name, **model_config)
if model_config.get("pad_to_left", True):
tokenizer.padding_side = "left"
tokenizer.pad_token_id = (
config.pad_token_id if config.pad_token_id else tokenizer.eos_token_id
)
MODEL_CLASS = (
AutoModelForTokenClassification # Use llmlingua2
if any("ForTokenClassification" in ar for ar in config.architectures)
else AutoModelForCausalLM
)
self.device = (
device_map
if any(key in device_map for key in ["cuda", "cpu", "mps"])
else "cuda"
)
if "cuda" in device_map or "cpu" in device_map:
model = MODEL_CLASS.from_pretrained(
model_name,
torch_dtype=model_config.get(
"torch_dtype", "auto" if device_map == "cuda" else torch.float32
),
device_map=device_map,
config=config,
ignore_mismatched_sizes=True,
**model_config,
)
else:
model = MODEL_CLASS.from_pretrained(
model_name,
device_map=device_map,
torch_dtype=model_config.get("torch_dtype", "auto"),
pad_token_id=tokenizer.pad_token_id,
**model_config,
)
self.tokenizer = tokenizer
self.model = model
self.context_idxs = []
self.max_position_embeddings = config.max_position_embeddings
def get_ppl(
self,
text: str,
granularity: str = "sentence",
input_ids=None,
attention_mask=None,
past_key_values=None,
return_kv=False,
end=None,
condition_mode: str = "none",
condition_pos_id: int = 0,
):
if input_ids is None:
tokenized_text = self.tokenizer(text, return_tensors="pt")
input_ids = tokenized_text["input_ids"].to(self.device)
attention_mask = tokenized_text["attention_mask"].to(self.device)
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
else:
past_length = 0
if end is None:
end = input_ids.shape[1]
end = min(end, past_length + self.max_position_embeddings)
with torch.no_grad():
response = self.model(
input_ids[:, past_length:end],
attention_mask=attention_mask[:, :end],
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = response.past_key_values
shift_logits = response.logits[..., :-1, :].contiguous()
shift_labels = input_ids[..., past_length + 1 : end].contiguous()
# Flatten the tokens
active = (attention_mask[:, past_length:end] == 1)[..., :-1].view(-1)
active_logits = shift_logits.view(-1, shift_logits.size(-1))[active]
active_labels = shift_labels.view(-1)[active]
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
loss = loss_fct(active_logits, active_labels)
if condition_mode == "before":
loss = loss[:condition_pos_id]
elif condition_mode == "after":
loss = loss[condition_pos_id:]
res = loss.mean() if granularity == "sentence" else loss
return (res, past_key_values) if return_kv else res
def __call__(self, *args, **kwargs):
return self.compress_prompt(*args, **kwargs)
def structured_compress_prompt(
self,
context: List[str],
instruction: str = "",
question: str = "",
rate: float = 0.5,
target_token: float = -1,
iterative_size: int = 200,
force_context_ids: List[int] = None,
force_context_number: int = None,
use_sentence_level_filter: bool = False,
use_context_level_filter: bool = True,
use_token_level_filter: bool = True,
keep_split: bool = False,
keep_first_sentence: int = 0,
keep_last_sentence: int = 0,
keep_sentence_number: int = 0,
high_priority_bonus: int = 100,
context_budget: str = "+100",
token_budget_ratio: float = 1.4,
condition_in_question: str = "none",
reorder_context: str = "original",
dynamic_context_compression_ratio: float = 0.0,
condition_compare: bool = False,
add_instruction: bool = False,
rank_method: str = "llmlingua",
concate_question: bool = True,
):
"""
Compresses the given prompt context based on a specified structure.
Each element of context should be segmented using one or more non-nested '<llmlingua></llmlingua>' tags.
Each '<llmlingua>' tag can include optional parameters 'rate' and 'compress' (e.g., '<llmlingua, rate=0.3, compress=True>'),
indicating the compression rate for that segment. Default values are 'rate=rate' and 'compress=True'.
When 'compress' is set to False, it overrides the 'rate' parameter, resulting in no compression for that segment.
Args:
context (List[str]): List of context strings divided by '<llmlingua></llmlingua>' tags with optional compression settings.
instruction (str, optional): Additional instruction text to be included in the prompt. Default is an empty string.
question (str, optional): A specific question that the prompt is addressing. Default is an empty string.
rate (float, optional): The compression rate is defined the same as in paper "Language Modeling Is Compression".
Delétang, Grégoire, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher Mattern,
Jordi Grau-Moya et al. "Language modeling is compression." arXiv preprint arXiv:2309.10668 (2023):
.. math::\text{Compression Rate} = \frac{\text{Compressed Size}}{\text{Raw Size}}
Default is 0.5. The actual compression rate is generally lower than the specified target, but there can be
fluctuations due to differences in tokenizers. If specified, it should be a float less than or equal
to 1.0, representing the target compression rate. ``rate``, is applicable only within the context-level filter
and the sentence-level filter. In the token-level filter, the rate for each segment overrides the global rate.
However, for segments where no specific rate is defined, the global rate serves as the default value. The final
compression rate of the entire text is a composite result of multiple compression rates applied across different sections.
target_token (float, optional): The global maximum number of tokens to be achieved. Default is -1, indicating no
specific target. The actual number of tokens after compression should generally be less than the specified target_token,
but there can be fluctuations due to differences in tokenizers. If specified, compression will be based on the target_token as
the sole criterion, overriding the ``rate``. ``target_token``, is applicable only within the context-level
filter and the sentence-level filter. In the token-level filter, the rate for each segment overrides the global target token.
However, for segments where no specific rate is defined, the global rate calculated from global target token serves
as the default value. The final target token of the entire text is a composite result of multiple compression rates
applied across different sections.
iterative_size (int, optional): The number of tokens to consider in each iteration of compression. Default is 200.
force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
force_context_number (int, optional): The number of context sections to forcibly include. Default is None.
use_sentence_level_filter (bool, optional): Whether to apply sentence-level filtering in compression. Default is False.
use_context_level_filter (bool, optional): Whether to apply context-level filtering in compression. Default is True.
use_token_level_filter (bool, optional): Whether to apply token-level filtering in compression. Default is True.
keep_split (bool, optional): Whether to preserve the original separators without compression. Default is False.
keep_first_sentence (int, optional): Number of sentences to forcibly preserve from the start of the context. Default is 0.
keep_last_sentence (int, optional): Number of sentences to forcibly preserve from the end of the context. Default is 0.
keep_sentence_number (int, optional): Total number of sentences to forcibly preserve in the compression. Default is 0.
high_priority_bonus (int, optional): Bonus score for high-priority sentences to influence their likelihood of being retained. Default is 100.
context_budget (str, optional): Token budget for the context-level filtering, expressed as a string to indicate flexibility. Default is "+100".
token_budget_ratio (float, optional): Ratio to adjust token budget during sentence-level filtering. Default is 1.4.
condition_in_question (str, optional): Specific condition to apply to question in the context. Default is "none".
reorder_context (str, optional): Strategy for reordering context in the compressed result. Default is "original".
dynamic_context_compression_ratio (float, optional): Ratio for dynamically adjusting context compression. Default is 0.0.
condition_compare (bool, optional): Whether to enable condition comparison during token-level compression. Default is False.
add_instruction (bool, optional): Whether to add the instruction to the prompt prefix. Default is False.
rank_method (str, optional): Method used for ranking elements during compression. Default is "llmlingua".
concate_question (bool, optional): Whether to concatenate the question to the compressed prompt. Default is True.
Returns:
dict: A dictionary containing:
- "compressed_prompt" (str): The resulting compressed prompt.
- "origin_tokens" (int): The original number of tokens in the input.
- "compressed_tokens" (int): The number of tokens in the compressed output.
- "ratio" (str): The compression ratio achieved, calculated as the original token number divided by the token number after compression.
- "rate" (str): The compression rate achieved, in a human-readable format.
- "saving" (str): Estimated savings in GPT-4 token usage.
"""
if not context:
context = [" "]
if isinstance(context, str):
context = [context]
context = [
self.tokenizer.decode(self.tokenizer(c, add_special_tokens=False).input_ids)
for c in context
]
context_tokens_length = [self.get_token_length(c) for c in context]
instruction_tokens_length, question_tokens_length = self.get_token_length(
instruction
), self.get_token_length(question)
if target_token == -1:
target_token = (
(
instruction_tokens_length
+ question_tokens_length
+ sum(context_tokens_length)
)
* rate
- instruction_tokens_length
- (question_tokens_length if concate_question else 0)
)
else:
rate = target_token / sum(context_tokens_length)
(
context,
context_segs,
context_segs_rate,
context_segs_compress,
) = self.segment_structured_context(context, rate)
return self.compress_prompt(
context,
instruction,
question,
rate,
target_token,
iterative_size,
force_context_ids,
force_context_number,
use_sentence_level_filter,
use_context_level_filter,
use_token_level_filter,
keep_split,
keep_first_sentence,
keep_last_sentence,
keep_sentence_number,
high_priority_bonus,
context_budget,
token_budget_ratio,
condition_in_question,
reorder_context,
dynamic_context_compression_ratio,
condition_compare,
add_instruction,
rank_method,
concate_question,
context_segs=context_segs,
context_segs_rate=context_segs_rate,
context_segs_compress=context_segs_compress,
)
def compress_prompt(
self,
context: List[str],
instruction: str = "",
question: str = "",
# llmlingua1
rate: float = 0.5,
target_token: float = -1,
iterative_size: int = 200,
force_context_ids: List[int] = None,
force_context_number: int = None,
use_sentence_level_filter: bool = False, # hầu như ko dùng
use_context_level_filter: bool = True,
use_token_level_filter: bool = True,
keep_split: bool = False,
keep_first_sentence: int = 0,
keep_last_sentence: int = 0,
keep_sentence_number: int = 0,
high_priority_bonus: int = 100,
context_budget: str = "+100",
token_budget_ratio: float = 1.4,
condition_in_question: str = "none",
reorder_context: str = "original",
dynamic_context_compression_ratio: float = 0.0,
condition_compare: bool = False,
add_instruction: bool = False,
rank_method: str = "llmlingua",
concate_question: bool = True,
context_segs: List[str] = None,
context_segs_rate: List[float] = None,
context_segs_compress: List[bool] = None,
# llmlingua2
target_context: int = -1, # config số lượng context trả về
context_level_rate: float = 1.0, # config tỉ lệ nén nhỏ nhất khi sử dụng context-level
context_level_target_token: int = -1, # config số token tối đa khi sử dụng context-level
return_word_label: bool = False, # config liệu có trả về word trong label
word_sep: str = "\t\t|\t\t",
label_sep: str = " ",
token_to_word: str = "mean", # Config phương pháp sử dụng chuyển từ xác suất token sang xác suất word
force_tokens: List[str] = [], # Config các tokens luôn được giữ lại trong compressed prompt
force_reserve_digit: bool = False, # Config liệu có bắt buộc giữ các token là chữ số
drop_consecutive: bool = False, # Config liệu có loại bỏ các tokens trong force token khi mà các từ này xuất hiện trong compressed prompt
chunk_end_tokens: List[str] = [".", "\n"], # Config các stop token để segment chunk
):
"""
Compresses the given context.
Args:
context (List[str]): List of context strings that form the basis of the prompt.
instruction (str, optional): Additional instruction text to be included in the prompt. Default is an empty string.
question (str, optional): A specific question that the prompt is addressing. Default is an empty string.
rate (float, optional): The maximum compression rate target to be achieved. The compression rate is defined
the same as in paper "Language Modeling Is Compression". Delétang, Grégoire, Anian Ruoss, Paul-Ambroise Duquenne,
Elliot Catt, Tim Genewein, Christopher Mattern, Jordi Grau-Moya et al. "Language modeling is compression."
arXiv preprint arXiv:2309.10668 (2023):
.. math::\text{Compression Rate} = \frac{\text{Compressed Size}}{\text{Raw Size}}
Default is 0.5. The actual compression rate is generally lower than the specified target, but there can be
fluctuations due to differences in tokenizers. If specified, it should be a float less than or equal
to 1.0, representing the target compression rate.
target_token (float, optional): The maximum number of tokens to be achieved. Default is -1, indicating no specific target.
The actual number of tokens after compression should generally be less than the specified target_token, but there can
be fluctuations due to differences in tokenizers. If specified, compression will be based on the target_token as
the sole criterion, overriding the ``rate``.
iterative_size (int, optional): The number of tokens to consider in each iteration of compression. Default is 200.
force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
force_context_number (int, optional): The number of context sections to forcibly include. Default is None.
use_sentence_level_filter (bool, optional): Whether to apply sentence-level filtering in compression. Default is False.
use_context_level_filter (bool, optional): Whether to apply context-level filtering in compression. Default is True.
use_token_level_filter (bool, optional): Whether to apply token-level filtering in compression. Default is True.
keep_split (bool, optional): Whether to preserve the original separators without compression. Default is False.
keep_first_sentence (int, optional): Number of sentences to forcibly preserve from the start of the context. Default is 0.
keep_last_sentence (int, optional): Number of sentences to forcibly preserve from the end of the context. Default is 0.
keep_sentence_number (int, optional): Total number of sentences to forcibly preserve in the compression. Default is 0.
high_priority_bonus (int, optional): Bonus score for high-priority sentences to influence their likelihood of being retained. Default is 100.
context_budget (str, optional): Token budget for the context-level filtering, expressed as a string to indicate flexibility. Default is "+100".
token_budget_ratio (float, optional): Ratio to adjust token budget during sentence-level filtering. Default is 1.4.
condition_in_question (str, optional): Specific condition to apply to question in the context. Default is "none".
reorder_context (str, optional): Strategy for reordering context in the compressed result. Default is "original".
dynamic_context_compression_ratio (float, optional): Ratio for dynamically adjusting context compression. Default is 0.0.
condition_compare (bool, optional): Whether to enable condition comparison during token-level compression. Default is False.
add_instruction (bool, optional): Whether to add the instruction to the prompt prefix. Default is False.
rank_method (str, optional): Method used for ranking elements during compression. Default is "llmlingua".
concate_question (bool, optional): Whether to concatenate the question to the compressed prompt. Default is True.
target_context (int, optional): The maximum number of contexts to be achieved. Default is -1, indicating no specific target.
context_level_rate (float, optional): The minimum compression rate target to be achieved in context level. Default is 1.0.
context_level_target_token (float, optional): The maximum number of tokens to be achieved in context level compression.
Default is -1, indicating no specific target. Only used in the coarse-to-fine compression senario.
force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
return_word_label (bool, optional): Whether to return word with corresponding label. Default is False.
word_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition words. Default is "\t\t|\t\t".
label_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition word and label. Default is " ".
token_to_word (str, optional): How to convert token probability to word probability. Default is "mean".
force_tokens (List[str], optional): List of specific tokens to always include in the compressed result. Default is [].
force_reserve_digit (bool, optional): Whether to forcibly reserve tokens that containing digit (0,...,9). Default is False.
drop_consecutive (bool, optinal): Whether to drop tokens which are in 'force_tokens' but appears consecutively in compressed prompt.
Default is False.
chunk_end_tokens (List[str], optinal): The early stop tokens for segmenting chunk. Default is [".", "\n"],
Returns:
dict: A dictionary containing:
- "compressed_prompt" (str): The resulting compressed prompt.
- "compressed_prompt_list" (List[str]): List of the resulting compressed prompt. Only used in llmlingua2.
- "fn_labeled_original_prompt" (str): original words along with their labels
indicating whether to reserve in compressed prompt, in the format (word label_sep label)
Only used in llmlingua2 when return_word_label = True.
- "origin_tokens" (int): The original number of tokens in the input.
- "compressed_tokens" (int): The number of tokens in the compressed output.
- "ratio" (str): The compression ratio achieved, calculated as the original token number divided by the token number after compression.
- "rate" (str): The compression rate achieved, in a human-readable format.
- "saving" (str): Estimated savings in GPT-4 token usage.
"""
if self.use_llmlingua2: # dùng cả llmlingua2 và llmlingua1
return self.compress_prompt_llmlingua2(
context,
rate=rate,
target_token=target_token,
use_context_level_filter=use_context_level_filter, # True
use_token_level_filter=use_token_level_filter,
target_context=target_context,
context_level_rate=context_level_rate,
context_level_target_token=context_level_target_token,
force_context_ids=force_context_ids,
return_word_label=return_word_label,
word_sep=word_sep,
label_sep=label_sep,
token_to_word=token_to_word,
force_tokens=force_tokens,
force_reserve_digit=force_reserve_digit,
drop_consecutive=drop_consecutive,
chunk_end_tokens=chunk_end_tokens,
)
# return luôn một hàm là ko chạy tiếp phần sau nữa
assert (
rate <= 1.0
), "Error: 'rate' must not exceed 1.0. The value of 'rate' indicates compression rate and must be within the range [0, 1]."
if not context:
context = [" "]
if isinstance(context, str):
context = [context]
assert not (
rank_method == "longllmlingua" and not question
), "In the LongLLMLingua, it is necessary to set a question."
if condition_compare and "_condition" not in condition_in_question:
condition_in_question += "_condition"
if rank_method == "longllmlingua":
if condition_in_question == "none":
condition_in_question = "after"
elif rank_method == "llmlingua":
condition_in_question = (
"none"
if "_condition" not in condition_in_question
else "none_condition"
)
origin_tokens = len(
self.oai_tokenizer.encode(
"\n\n".join([instruction] + context + [question]).strip()
)
)
context_tokens_length = [self.get_token_length(c) for c in context]
instruction_tokens_length, question_tokens_length = self.get_token_length(
instruction
), self.get_token_length(question)
if target_token == -1:
target_token = (
(
instruction_tokens_length
+ question_tokens_length
+ sum(context_tokens_length)
)
* rate
- instruction_tokens_length
- (question_tokens_length if concate_question else 0)
)
condition_flag = "_condition" in condition_in_question
condition_in_question = condition_in_question.replace("_condition", "")
if len(context) > 1 and use_context_level_filter:
context, dynamic_ratio, context_used = self.control_context_budget(
context,
context_tokens_length,
target_token,
force_context_ids,
force_context_number,
question,
condition_in_question,
reorder_context=reorder_context,
dynamic_context_compression_ratio=dynamic_context_compression_ratio,
rank_method=rank_method,
context_budget=context_budget,
context_segs=context_segs,
context_segs_rate=context_segs_rate,
context_segs_compress=context_segs_compress,
)
#print('Context used: ', context_used)
if context_segs is not None:
context_segs = [context_segs[idx] for idx in context_used]
context_segs_rate = [context_segs_rate[idx] for idx in context_used]
context_segs_compress = [
context_segs_compress[idx] for idx in context_used
]
else:
dynamic_ratio = [0.0] * len(context)
segments_info = []
if use_sentence_level_filter:
context, segments_info = self.control_sentence_budget(
context,
target_token,
keep_first_sentence=keep_first_sentence,
keep_last_sentence=keep_last_sentence,
keep_sentence_number=keep_sentence_number,
high_priority_bonus=high_priority_bonus,
token_budget_ratio=token_budget_ratio,
question=question,
condition_in_question=condition_in_question,
rank_method=rank_method,
context_segs=context_segs,
context_segs_rate=context_segs_rate,
context_segs_compress=context_segs_compress,
)
elif context_segs is not None:
for context_idx in range(len(context)):
segments_info.append(
[
(len(seg_text), seg_rate, seg_compress)
for seg_text, seg_rate, seg_compress in zip(
context_segs[context_idx],
context_segs_rate[context_idx],
context_segs_compress[context_idx],
)
]
)
segments_info = [
self.concate_segment_info(segment_info) for segment_info in segments_info
]
if condition_flag:
prefix = question + "\n\n" + instruction if add_instruction else question
if (
self.get_token_length(prefix + "\n\n") + iterative_size * 2
> self.max_position_embeddings
):
tokens = self.tokenizer(prefix, add_special_tokens=False).input_ids
prefix = self.tokenizer.decode(
tokens[: self.prefix_bos_num]
+ tokens[
len(tokens)
- self.max_position_embeddings
+ 2
+ self.prefix_bos_num
+ 2 * iterative_size :
]
)
start = self.get_prefix_length(prefix + "\n\n", context[0])
context = [prefix] + context
else:
start = 0
#print('Context level: ', context)
if use_token_level_filter:
context = self.iterative_compress_prompt(
context,
target_token,
iterative_size=iterative_size,
keep_split=keep_split,
start=start,
dynamic_ratio=dynamic_ratio,
condition_compare=condition_compare,
segments_info=segments_info,
)
compressed_prompt = (
self.tokenizer.batch_decode(context[0])[0]
.replace("<s> ", "")
.replace("<s>", "")
)
else:
if condition_flag:
context = context[1:]
compressed_prompt = "\n\n".join(context)
#compressed_prompt = " ".join(context)
compressed_prompt = "\n\n".join(context) # gồm cả context của 2 loại level
#compressed_prompt = " ".join(context)
res = []
if instruction:
res.append(instruction)
if compressed_prompt.strip():
res.append(compressed_prompt)
if question and concate_question:
res.append(question)
compressed_prompt = "\n\n".join(res)
#compressed_prompt = " ".join(res)
compressed_tokens = len(self.oai_tokenizer.encode(compressed_prompt))
saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
ratio = 1 if compressed_tokens == 0 else origin_tokens / compressed_tokens
rate = 1 / ratio
return {
"compressed_prompt": compressed_prompt,
"origin_tokens": origin_tokens,
"compressed_tokens": compressed_tokens,
"ratio": f"{ratio:.1f}x",
"rate": f"{rate * 100:.1f}%",
"saving": f", Saving ${saving:.1f} in GPT-4.",
}
def compress_prompt_llmlingua2(
self,
context: List[str],
rate: float = 0.5,
target_token: int = -1,
use_context_level_filter: bool = False, # True
use_token_level_filter: bool = True,
target_context: int = -1,
context_level_rate: float = 1.0,
context_level_target_token: int = -1,
force_context_ids: List[int] = [],
return_word_label: bool = False,
word_sep: str = "\t\t|\t\t",
label_sep: str = " ",
token_to_word: str = "mean",
force_tokens: List[str] = [],
force_reserve_digit: bool = False,
drop_consecutive: bool = False,
chunk_end_tokens: List[str] = [".", "\n"],
):
"""
Compresses the given context, instruction and question.
Args:
context (List[str]): List of context strings that form the basis of the prompt.
rate (float, optional): The minimum compression rate target to be achieved. Default is 0.5. The actual compression rate
generally exceeds the specified target, but there can be fluctuations due to differences in tokenizers. If specified,
it should be a float greater than or equal to 1.0, representing the target compression rate.
target_token (int, optional): The maximum number of tokens to be achieved. Default is -1, indicating no specific target.
The actual number of tokens after compression should generally be less than the specified target_token, but there can
be fluctuations due to differences in tokenizers. If specified, compression will be based on the target_token as
the sole criterion, overriding the rate.
target_context (int, optional): The maximum number of contexts to be achieved. Default is -1, indicating no specific target.
Only used in the coarse-to-fine compression.
context_level_rate (float, optional): The minimum compression rate target to be achieved in context level. Default is 1.0.
Only used in the coarse-to-fine compression.
context_level_target_token (float, optional): The maximum number of tokens to be achieved in context level compression.
Default is -1, indicating no specific target. Only used in the coarse-to-fine compression senario.
force_context_ids (List[int], optional): List of specific context IDs to always include in the compressed result. Default is None.
return_word_label (bool, optional): Whether to return word with corresponding label. Default is False.
word_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition words. Default is "\t\t|\t\t".
label_sep (str, optional): The sep token used in fn_labeled_original_prompt to partition word and label. Default is " ".
token_to_word (str, optional): How to convert token probability to word probability. Default is "mean".
force_tokens (List[str], optional): List of specific tokens to always include in the compressed result. Default is [].
force_reserve_digit (bool, optional): Whether to forcibly reserve tokens that containing digit (0,...,9). Default is False.
drop_consecutive (bool, optinal): Whether to drop tokens which are in 'force_tokens' but appears consecutively in compressed prompt.
Default is False.
chunk_end_tokens (List[str], optional): The early stop tokens for segmenting chunk. Default is [".", "\n"].
Returns:
dict: A dictionary containing:
- "compressed_prompt" (str): The resulting compressed prompt.
- "compressed_prompt_list" (List[str]): List of the resulting compressed prompt. (compress cho từng chụnk)
- "fn_labeled_original_prompt" (str): original words along with their labels (các từ được giữ lại)
indicating whether to reserve in compressed prompt, in the format (word label_sep label)
- "origin_tokens" (int): The original number of tokens in the input.
- "compressed_tokens" (int): The number of tokens in the compressed output.
- "ratio" (str): The compression ratio achieved, in a human-readable format.
- "rate" (str): The compression rate achieved, in a human-readable format.
- "saving" (str): Estimated savings in GPT-4 token usage.
"""
assert len(force_tokens) <= self.max_force_token # báo hiệu force token
token_map = {}
for i, t in enumerate(force_tokens):
if len(self.tokenizer.tokenize(t)) != 1:
token_map[t] = self.added_tokens[i] # add token (là các force token) + các kí tự [NEW]
#print('token map:', token_map)
chunk_end_tokens = copy.deepcopy(chunk_end_tokens)
for c in chunk_end_tokens:
if c in token_map:
chunk_end_tokens.append(token_map[c]) # Thêm các force token
chunk_end_tokens = set(chunk_end_tokens)
#print('chunk_end_tokens: ', chunk_end_tokens)
if type(context) == str:
context = [context]
context = copy.deepcopy(context)
#print('original context: ', context)
if len(context) == 1 and use_context_level_filter: # Sử dụng context-level # len context > 1
use_context_level_filter = False
# Bắt buộc ko dùng context level
n_original_token = 0
context_chunked = []
for i in range(len(context)):
n_original_token += self.get_token_length(
context[i], use_oai_tokenizer=True
)
for ori_token, new_token in token_map.items():
context[i] = context[i].replace(ori_token, new_token)
context_chunked.append(
self.__chunk_context(context[i], chunk_end_tokens=chunk_end_tokens) # Hàm chia chunk trong llmlingua2
) # list chunk
#print('context chunked:', context_chunked) (vẫn còn 5 context ban đầu)
#========================================================================================
# tinh chỉnh hyperparameter
if use_context_level_filter: # mặc định là dùng context level trong llmlingua2 do trong hàm compress prompt ban đầu default True
# want use_context_level_filter but do not specify any parameters in context level?
# Sử dụng context-level nhưng không config cụ thể các tham số trong context-level
# we will set context_level_rate = (rate + 1.0) / 2 if specify rate or target_token * 2 if specify target_token
if (
target_context <= 0
and context_level_rate >= 1.0
and context_level_target_token <= 0
):
if target_token < 0 and rate < 1.0:
context_level_rate = (
(rate + 1.0) / 2 if use_token_level_filter else rate
)
if target_token >= 0:
context_level_target_token = (
target_token * 2 if use_token_level_filter else target_token
)
if target_context >= 0: # Config target_context
context_level_rate = min(target_context / len(context), 1.0)
if context_level_target_token >= 0: # Config target_token (context_level)
context_level_rate = min(
context_level_target_token / n_original_token, 1.0
)
#========================================================================================
context_probs, context_words = self.__get_context_prob(
context_chunked, # list các context chunk
token_to_word=token_to_word,
force_tokens=force_tokens,
token_map=token_map,
force_reserve_digit=force_reserve_digit,
)
#print('context_probs: ', context_probs) # prob của tưng context
#print('context words: ', context_words)
#print('context level rate: ', context_level_rate)
threshold = np.percentile( # filtering theo probs
context_probs, int(100 * (1 - context_level_rate)) # chỉnh context_level_rate cho threshold, lọc context-level
)
#print('threshold: ', threshold)
reserved_context = [] # các context được giữ lại theo threshold (từ 5 ban đầu có thể giảm đi (<5))
context_label = [False] * len(context_probs)
for i, p in enumerate(context_probs):
if p >= threshold or (
force_context_ids is not None and i in force_context_ids
):
reserved_context.append(context_chunked[i])
context_label[i] = True
#print('reserved_context: ', reserved_context) # các context được giữ lại theo threshold
#print('context_label: ', context_label)
n_reserved_token = 0
for chunks in reserved_context:
for c in chunks:
n_reserved_token += self.get_token_length(c, use_oai_tokenizer=True) # số lượng token được giữ lại
if target_token >= 0:
rate = min(target_token / n_reserved_token, 1.0)
# có/ko sử dụng token-level vẫn trả về prompt compress
if use_token_level_filter: # lọc theo context-level rồi lọc theo token-level ()
compressed_context, word_list, word_label_list = self.__compress(
reserved_context, # compress từng context reserved được giữ lại
reduce_rate=max(0, 1 - rate),
token_to_word=token_to_word,
force_tokens=force_tokens,
token_map=token_map,
force_reserve_digit=force_reserve_digit,
drop_consecutive=drop_consecutive,
)
else:
compressed_context, word_list, word_label_list = self.__compress(
reserved_context,
reduce_rate=0,
token_to_word=token_to_word,
force_tokens=force_tokens,
token_map=token_map,
force_reserve_digit=force_reserve_digit,
drop_consecutive=drop_consecutive,
)
#print('compressed_context 1: ', compressed_context) # list # Final compressed
#print('word_list: ', word_list)
#print('word_label_list: ', word_label_list) # labels list của từng chunk
n_compressed_token = 0
for c in compressed_context:
n_compressed_token += self.get_token_length(c, use_oai_tokenizer=True)
saving = (n_original_token - n_compressed_token) * 0.06 / 1000
ratio = (
1 if n_compressed_token == 0 else n_original_token / n_compressed_token
)
res = {
"compressed_prompt": "\n\n".join(compressed_context),
#"compressed_prompt": " ".join(compressed_context),
#"compressed_prompt_list": compressed_context,
"origin_tokens": n_original_token,
"compressed_tokens": n_compressed_token,
"ratio": f"{ratio:.1f}x",
"rate": f"{1 / ratio * 100:.1f}%",
"saving": f", Saving ${saving:.1f} in GPT-4.",
}
#print('res: ', res)
if return_word_label: # Nếu trả về label word (default=False)
words = []
labels = []
j = 0
for i in range(len(context)):
if context_label[i]:
words.extend(word_list[j])
labels.extend(word_label_list[j])
j += 1
else:
words.extend(context_words[i])
labels.extend([0] * len(context_words[i]))
word_label_lines = word_sep.join( # join theo word_sep
[f"{word}{label_sep}{label}" for word, label in zip(words, labels)]
)
res["fn_labeled_original_prompt"] = word_label_lines # đánh labels từng từ
#print('res: ', res)
return res
# tinh chỉnh hyperparameter
if target_token > 0:
rate = min(target_token / n_original_token, 1.0)
if use_token_level_filter: # Chỉ Sử dụng token-level trong llmlingua2
compressed_context, word_list, word_label_list = self.__compress( # compress theo llmlingua2
context_chunked,
reduce_rate=max(0, 1 - rate),
token_to_word=token_to_word,
force_tokens=force_tokens,
token_map=token_map,
force_reserve_digit=force_reserve_digit,
drop_consecutive=drop_consecutive, # Whether to drop tokens which are in 'force_tokens' but appears consecutively in compressed prompt.
)
else:
compressed_context, word_list, word_label_list = self.__compress(
context_chunked,
reduce_rate=0,
token_to_word=token_to_word,
force_tokens=force_tokens,
token_map=token_map,
force_reserve_digit=force_reserve_digit,
drop_consecutive=drop_consecutive,
)
# giống phần trên
#print('compressed_context 2: ', compressed_context) # compress theo token-level
n_compressed_token = 0
for c in compressed_context:
n_compressed_token += self.get_token_length(c, use_oai_tokenizer=True)
saving = (n_original_token - n_compressed_token) * 0.06 / 1000
ratio = 1 if n_compressed_token == 0 else n_original_token / n_compressed_token
res = {
"compressed_prompt": "\n\n".join(compressed_context),
#"compressed_prompt": " ".join(compressed_context), # phân tách các context bằng "\n\n"
#"compressed_prompt_list": compressed_context,
"origin_tokens": n_original_token,
"compressed_tokens": n_compressed_token,
"ratio": f"{ratio:.1f}x",
"rate": f"{1 / ratio * 100:.1f}%",
"saving": f", Saving ${saving:.1f} in GPT-4.",
}
if return_word_label:
words = []
labels = []
for w_list, l_list in zip(word_list, word_label_list):
words.extend(w_list)
labels.extend(l_list)
word_label_lines = word_sep.join(
[f"{word}{label_sep}{label}" for word, label in zip(words, labels)]
)
res["fn_labeled_original_prompt"] = word_label_lines
return res
def get_token_length(
self,
text: str,
add_special_tokens: bool = True,
use_oai_tokenizer: bool = False,
):
if use_oai_tokenizer:
return len(self.oai_tokenizer.encode(text))
else:
return len(
self.tokenizer(text, add_special_tokens=add_special_tokens).input_ids
)
def get_prefix_length(self, prefix: str, text: str):
possible_prefix_token = max(self.get_token_length(prefix, False) - 3, 1)
full_input_ids = self.tokenizer(
prefix + text[:100], add_special_tokens=False
).input_ids
for i in range(possible_prefix_token, len(full_input_ids)):
cur_prefix = self.tokenizer.decode(full_input_ids[:i])
if cur_prefix == prefix:
break
assert self.tokenizer.decode(full_input_ids[i:]) == text[:100]
return i
def get_condition_ppl(
self,
text: str,
question: str,
condition_in_question: str = "none",
granularity: str = "sentence",
):
if condition_in_question == "none":
return self.get_ppl(text, granularity=granularity)
elif condition_in_question == "before":
return self.get_ppl(
question + text,
granularity=granularity,
condition_mode="after",
condition_pos_id=self.get_token_length(question) - 1,
)
elif condition_in_question == "after":
return self.get_ppl(
text + question,
granularity=granularity,
condition_mode="after",
condition_pos_id=self.get_token_length(text) - 1,
)
def get_dynamic_compression_ratio(
self,
context: list,
target_token: float,
iterative_size: int,
dynamic_ratio: list,
start: int,
seg_info: List[List[tuple]] = None,
):
def get_ratio(base: float, delta: float):
return max(min(1, base + delta), 0)
context_length = [self.get_token_length(ii, False) + 2 for ii in context]
if start:
context_length = context_length[1:]
tau = target_token / (sum(context_length) + 1)
res, idx, last, last_target = [], 0, 1, []
while idx < len(context_length):
if last + context_length[idx] >= iterative_size:
last_target.append(
(iterative_size - last, get_ratio(tau, dynamic_ratio[idx]))
)
res.append(last_target)
last = last + context_length[idx] - iterative_size
if last > iterative_size:
k = last // iterative_size
res.extend(
[[(iterative_size, get_ratio(tau, dynamic_ratio[idx]))]] * k
)
last -= k * iterative_size
last_target = (
[(last, get_ratio(tau, dynamic_ratio[idx]))] if last else []
)
else:
last += context_length[idx]
last_target.append(
(context_length[idx], get_ratio(tau, dynamic_ratio[idx]))
)
idx += 1
if last_target:
res.append(last_target)
return res
def get_structured_dynamic_compression_ratio(
self,
context: list,
iterative_size: int,
dynamic_ratio: list,
start: int,
seg_info: List[List[tuple]] = None,
):
if start:
pure_context = context[1:]
else:
pure_context = context
global_dynamic_rate, global_dynamic_compress, segments = [], [], []
for context_idx, text in enumerate(pure_context):
text_seen = 0
for seg_idx, (seg_len, seg_rate, seg_compress) in enumerate(
seg_info[context_idx]
):
seg_text = text[text_seen : text_seen + seg_len]
if (
seg_idx == len(seg_info[context_idx]) - 1
and context_idx != len(pure_context) - 1
):
seg_text += "\n\n"
segments.append(seg_text)
if seg_compress:
global_dynamic_rate.append(seg_rate)
else:
global_dynamic_rate.append(1.0)
global_dynamic_compress.append(seg_compress)
text_seen += seg_len
origin_text = "\n\n".join(pure_context)
assert len("".join(segments)) == len(origin_text)
assert len(segments) == len(global_dynamic_rate) == len(global_dynamic_compress)
text_input_ids = self.tokenizer(
"\n\n".join(context), add_special_tokens=False
).input_ids[start:]
assert self.tokenizer.decode(text_input_ids) == origin_text
dynamic_compression_ratio = self.token_segment(
text_input_ids,
iterative_size,
segments,
global_dynamic_rate,
global_dynamic_compress,
)
return dynamic_compression_ratio
def token_segment(
self,
text_input_ids: List[int],
iterative_size: int,
segments: List[str],
global_dynamic_rate: List[float],
global_dynamic_compress: List[bool],
):
decode_window = 3
seg_idx, seg_seen, token_seen_num, last_rate = 0, 0, 0, -1
dynamic_compression_rate, local_compresssion_rate = [], []
for i in range(len(text_input_ids)):
if i < decode_window:
id_pre, id_cur = text_input_ids[:i], text_input_ids[: i + 1]
else:
id_pre, id_cur = (
text_input_ids[i - decode_window + 1 : i],
text_input_ids[i - decode_window + 1 : i + 1],
)
cur_word = self.tokenizer.decode(id_cur)[
len(self.tokenizer.decode(id_pre)) :
]
cur_word_len = len(cur_word)
if cur_word_len and cur_word_len >= len(segments[seg_idx]) - seg_seen:
possible_rate, possible_compress = [], []
while (
cur_word_len and cur_word_len >= len(segments[seg_idx]) - seg_seen
):
possible_rate.append(global_dynamic_rate[seg_idx])
possible_compress.append(global_dynamic_compress[seg_idx])
cur_word_len -= len(segments[seg_idx]) - seg_seen
seg_idx += 1
seg_seen = 0
if cur_word_len:
possible_rate.append(global_dynamic_rate[seg_idx])
possible_compress.append(global_dynamic_compress[seg_idx])
new_rate = 1.0 if False in possible_compress else min(possible_rate)
else:
new_rate = global_dynamic_rate[seg_idx]
if new_rate != last_rate and i - token_seen_num:
local_compresssion_rate.append((i - token_seen_num, last_rate))
token_seen_num = i
last_rate = new_rate
seg_seen += cur_word_len
if (i + 1) % iterative_size == 0:
if token_seen_num != i + 1:
local_compresssion_rate.append((i + 1 - token_seen_num, last_rate))
token_seen_num = i + 1
dynamic_compression_rate.append(local_compresssion_rate[:])
local_compresssion_rate = []
if token_seen_num != len(text_input_ids):
local_compresssion_rate.append(
(len(text_input_ids) - token_seen_num, last_rate)
)
if local_compresssion_rate != []:
dynamic_compression_rate.append(local_compresssion_rate[:])
return dynamic_compression_rate
def control_context_budget(
self,
context: List[str],
context_tokens_length: List[int],
target_token: float,
force_context_ids: List[int] = None,
force_context_number: int = None,
question: str = "",
condition_in_question: str = "none",
reorder_context: str = "original",
dynamic_context_compression_ratio: float = 0.0,
rank_method: str = "longllmlingua",
context_budget: str = "+100",
context_segs: List[List[str]] = None,
context_segs_rate: List[List[float]] = None,
context_segs_compress: List[List[bool]] = None,
):
demostrations_sort = self.get_rank_results(
context,
question,
rank_method,
condition_in_question,
context_tokens_length,
)
if target_token < 0:
target_token = 100
target_token = eval("target_token" + context_budget)
res = []
used = force_context_ids if force_context_ids is not None else []
if context_segs is not None:
for idx, _ in enumerate(context):
if False in context_segs_compress[idx]:
used.append(idx)
self.context_idxs.append([x for idx, (x, _) in enumerate(demostrations_sort)])
for idx, _ in demostrations_sort:
if idx >= len(context_tokens_length):
continue
target_token -= context_tokens_length[idx]
if idx not in used:
used.append(idx)
if target_token < 0 or (
force_context_number is not None and len(res) >= force_context_number
):
break
original_used = used
if reorder_context == "original":
used = sorted(used)
elif reorder_context == "two_stage":
l, r = [_ for idx, _ in enumerate(used) if idx % 2 == 0], [
_ for idx, _ in enumerate(used) if idx % 2 == 1
]
used = l + r[::-1]
if dynamic_context_compression_ratio > 0:
N = len(used)
dynamic_ratio = [
i * (abs(dynamic_context_compression_ratio) / (N - 1)) if N > 1 else 0
for i in range(-(N - 1), N, 2)
][::-1]
dynamic_ratio_map = {i: j for i, j in zip(original_used, dynamic_ratio)}
dynamic_ratio = [dynamic_ratio_map[i] for i in used]
else:
dynamic_ratio = [0.0] * len(used)
res = [context[idx] for idx in used if idx < len(context)]
return res, dynamic_ratio, used
def control_sentence_budget(
self,
context: List[str],
target_token: float,
keep_first_sentence: int = 0,
keep_last_sentence: int = 0,
keep_sentence_number: int = 0,
high_priority_bonus: int = 100,
token_budget_ratio: float = 1.4,
question: str = "",
condition_in_question: str = "none",
rank_method: str = "longllmlingua",
context_segs: List[List[str]] = None,
context_segs_rate: List[List[float]] = None,
context_segs_compress: List[List[bool]] = None,
):
def keep_sentence(dem_idx: int, sent_keep: int):
idxs = sorted(dem_g[dem_idx], key=lambda x: sentence_ppl[x])[:sent_keep]
for idx in idxs:
sentence_ppl[idx] += high_priority_bonus
def sync_sentence(sentences, text):
seen_text = 0
sentence_num = len(sentences)
new_sentences = []
for i, s in enumerate(sentences):
assert s == text[seen_text : seen_text + len(s)]
if i == sentence_num - 1:
new_sentences.append(text[seen_text:])
break
next_sentence_start = text.find(
sentences[i + 1][:5], seen_text + len(s)
)
new_sentences.append(text[seen_text:next_sentence_start])
seen_text = next_sentence_start
assert "".join(new_sentences) == text
return new_sentences
sentences = [nltk.sent_tokenize(c) for c in context]
sentences = [sync_sentence(s, c) for s, c in zip(sentences, context)]
dem_g, s2de, idx = defaultdict(set), defaultdict(int), 0
for idx_d, s in enumerate(sentences):
for _ in s:
dem_g[idx_d].add(idx)
s2de[idx] = idx_d
idx += 1
if context_segs is not None:
sen2seg_ratio = {}
idx = 0
for idx_d, sentences_each_context in enumerate(sentences):
segments_length = [len(s) for s in context_segs[idx_d]]
seg_idx, cur_seg_seen = 0, 0
for sentence in sentences_each_context:
sentence_seg_ratio = []
remain = len(sentence)
while remain:
if segments_length[seg_idx] - cur_seg_seen <= remain:
new_seg_len = segments_length[seg_idx] - cur_seg_seen
sentence_seg_ratio.append(
(
new_seg_len,
context_segs_rate[idx_d][seg_idx],
context_segs_compress[idx_d][seg_idx],
)
)
seg_idx += 1
cur_seg_seen = 0
remain -= new_seg_len
else:
sentence_seg_ratio.append(
(
remain,
context_segs_rate[idx_d][seg_idx],
context_segs_compress[idx_d][seg_idx],
)
)
cur_seg_seen += remain
remain = 0
sen2seg_ratio[idx] = sentence_seg_ratio
idx += 1
context_sentences = [s for ii in sentences for s in ii]
sentence_tokens_length = [
self.get_token_length(sentence) for sentence in context_sentences
]
N = len(context_sentences)
flags = list(range(len(context_sentences)))
if len(sentence_tokens_length) == 1:
segments_info = []
if context_segs is not None:
segments_info.append(sen2seg_ratio[0])
return context, segments_info
if rank_method == "longllmlingua":
sentence_ppl = [
self.get_condition_ppl(sentence, question, condition_in_question)
.cpu()
.numpy()
.item()
for sentence in context_sentences
]
if keep_first_sentence:
sentence_ppl[:keep_first_sentence] = [
ii + high_priority_bonus
for ii in sentence_ppl[:keep_first_sentence]
]
if keep_last_sentence:
sentence_ppl[-keep_last_sentence:] = [
ii + high_priority_bonus
for ii in sentence_ppl[-keep_last_sentence:]
]
if keep_sentence_number:
for dem_idx in range(len(sentences)):
keep_sentence(dem_idx, keep_sentence_number)
sort_direct = -1 if condition_in_question == "none" else 1
sent_sort = sorted(
enumerate(sentence_ppl), key=lambda x: sort_direct * x[1]
)
else:
sent_sort = self.get_rank_results(
context_sentences,
question,
rank_method,
condition_in_question,
[0] * len(context_sentences),
)
sentence_flags = [False] * N
if target_token < 0:
target_token = 100
target_token *= token_budget_ratio
res = []
for idx, _ in sent_sort:
idx = flags[idx]
target_token -= sentence_tokens_length[idx]
sentence_flags[idx] = True
if target_token < 0:
break
if context_segs is not None:
for idx in range(N):
preserved = [sen_seg_info[2] for sen_seg_info in sen2seg_ratio[idx]]
if False in preserved:
sentence_flags[idx] = True
idx = 0
res = []
new_segments_info = []
for s in sentences:
tmp = [jj for ii, jj in enumerate(s) if sentence_flags[idx + ii]]
res.append("".join(tmp))
if context_segs is not None:
segment_ratio = []
for ii in range(len(s)):
if sentence_flags[idx + ii]:
segment_ratio.extend(sen2seg_ratio[idx + ii])
new_segments_info.append(segment_ratio)
idx += len(s)
return res, new_segments_info
def get_compressed_input(
self,
loss,
input_ids,
attention_mask,
end=200,
iterative_size=200,
threshold=0.5,
keep_flag=None,
split_token_id: int = 13,
start: int = 0,
self_loss=None,
self_input_ids=None,
self_attention_mask=None,
):
if self_loss is not None:
need_idx = torch.concat(
[
loss[:start] > 0,
self_loss[: loss[start:].shape[0]] - loss[start:] > threshold,
loss[:1] > 0,
]
)
else:
need_idx = torch.concat([loss > threshold, loss[:1] > 0])
need_idx[end:] = 1
need_idx[: end - iterative_size] = 1
loss = loss[need_idx[:-1]]
if self_loss is not None:
if need_idx.shape[0] < self_loss.shape[0] + start + 1:
need_idx = torch.cat(
[
need_idx,
torch.ones(
self_loss.shape[0] - need_idx.shape[0] + start + 1,
dtype=torch.bool,
).to(need_idx.device),
]
)
self_loss = self_loss[need_idx[start:-1]]
if need_idx.shape[0] < input_ids.shape[1]:
need_idx = torch.cat(
[
need_idx,
torch.ones(
input_ids.shape[1] - need_idx.shape[0], dtype=torch.bool
).to(need_idx.device),
]
)
elif need_idx.shape[0] > input_ids.shape[1]:
need_idx = need_idx[: input_ids.shape[1]]
if keep_flag is not None:
need_idx[keep_flag == 1] = 1
last = -1
if keep_flag is not None:
for ii in range(max(0, end - iterative_size), end):
if need_idx[ii] != 1:
continue
now = input_ids[0][ii].detach().cpu().item()
if (
now == split_token_id
and last == split_token_id
and keep_flag[ii].detach().cpu().item() == 0
):
need_idx[ii] = 0
else:
last = now
compressed_input_ids = input_ids[attention_mask == 1][need_idx].unsqueeze(0)
compressed_attention_mask = attention_mask[attention_mask == 1][
need_idx
].unsqueeze(0)
if self_loss is not None:
self_compressed_input_ids = self_input_ids[self_attention_mask == 1][
need_idx[start:]
].unsqueeze(0)
self_compressed_attention_mask = self_attention_mask[
self_attention_mask == 1
][need_idx[start:]].unsqueeze(0)
else:
self_compressed_input_ids, self_compressed_attention_mask = None, None
if keep_flag is not None:
if len(keep_flag) > len(need_idx):
keep_flag = torch.cat(
[
keep_flag[:start],
keep_flag[start : len(need_idx) + start][need_idx],
keep_flag[start + len(need_idx) :],
]
)
else:
keep_flag = keep_flag[need_idx]
end -= (need_idx[:end] == 0).sum()
return (
compressed_input_ids,
compressed_attention_mask,
keep_flag,
end,
loss,
self_loss,
self_compressed_input_ids,
self_compressed_attention_mask,
)
def get_estimate_threshold_base_distribution(
self, ppl, ratio: float, condition_flag: bool = False
):
if ratio == 1.0:
return float("-inf")
ppl = ppl[ppl != 10000]
target_token = max(0, min(len(ppl) - 1, int(len(ppl) * ratio) - 1))
return (
ppl.sort(descending=not condition_flag)
.values[target_token]
.detach()
.cpu()
.item()
)
def iterative_compress_prompt(
self,
context: List[str],
target_token: float,
iterative_size: int = 200,
keep_split: bool = False,
split_token_id: int = 13,
start: int = 0,
dynamic_ratio: list = None,
condition_compare: bool = False,
segments_info: List[List[tuple]] = None,
):
if segments_info is None or segments_info == []:
iterative_ratios = self.get_dynamic_compression_ratio( # Các tỉ số nén khác nhau
context, target_token, iterative_size, dynamic_ratio, start
)
else:
iterative_ratios = self.get_structured_dynamic_compression_ratio(
context, iterative_size, dynamic_ratio, start, segments_info
)
context = "\n\n".join(context)
tokenized_text = self.tokenizer(
context, return_tensors="pt", add_special_tokens=False
)
input_ids = tokenized_text["input_ids"].to(self.device)
attention_mask = tokenized_text["attention_mask"].to(self.device)
N = (attention_mask == 1).sum()
compressed_input_ids, compressed_attention_mask = input_ids, attention_mask
if condition_compare:
self_input_ids, self_attention_mask = (
input_ids[:, start:],
attention_mask[:, start:],
)
self_compressed_input_ids, self_compressed_attention_mask = (
self_input_ids,
self_attention_mask,
)
end = min(iterative_size + start, compressed_input_ids.shape[1])
threshold, keep_flag = None, None
if keep_split:
input_ids_numpy = input_ids.cpu().detach().numpy()[0]
N = len(input_ids_numpy)
keep_flag = [
int(
(
ii > 0
and input_ids_numpy[ii] == split_token_id
and input_ids_numpy[ii - 1] == split_token_id
)
or (
ii < N - 1
and input_ids_numpy[ii] == split_token_id
and input_ids_numpy[ii + 1] == split_token_id
)
)
for ii in range(N)
]
keep_flag = torch.tensor(keep_flag).to(self.device)
past_key_values, past_loss, ready_end = None, None, 0
self_past_key_values, self_past_loss, self_ready_end = None, None, 0
pop_compressed_input_ids, pop_self_compressed_input_ids = None, None
idx = 0
while end <= compressed_input_ids.shape[1]:
if end > self.max_position_embeddings and past_key_values is not None:
# KV-Cache Compression
e, s = end - self.max_position_embeddings, min(
self.cache_bos_num + start, self.max_position_embeddings
)
if pop_compressed_input_ids is None:
pop_compressed_input_ids = compressed_input_ids[:, :e]
else:
pop_compressed_input_ids = torch.cat(
[pop_compressed_input_ids, compressed_input_ids[:, :e]], dim=-1
)
compressed_input_ids = compressed_input_ids[:, e:]
compressed_attention_mask = compressed_attention_mask[:, e:]
past_key_values = [
[
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
]
for k, v in past_key_values
]
if keep_flag is not None:
keep_flag = keep_flag[e:]
end, ready_end = end - e, ready_end - e
if condition_compare:
s = min(s, self_past_key_values[0][0].shape[2] - e)
self_ready_end -= e
if pop_self_compressed_input_ids is None:
pop_self_compressed_input_ids = self_compressed_input_ids[:, :e]
else:
pop_self_compressed_input_ids = torch.cat(
[
pop_self_compressed_input_ids,
self_compressed_input_ids[:, :e],
],
dim=-1,
)
self_compressed_input_ids = self_compressed_input_ids[:, e:]
self_compressed_attention_mask = self_compressed_attention_mask[
:, e:
]
self_past_key_values = [
[
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
]
for k, v in self_past_key_values
]
loss, past_key_values = self.get_ppl(
"",
"token",
compressed_input_ids,
compressed_attention_mask,
past_key_values=past_key_values,
return_kv=True,
end=end if idx else None,
)
if loss.shape[0] == 0:
break
if past_loss is not None:
if end - 1 > len(past_loss):
past_loss = torch.cat(
[past_loss, torch.zeros_like(loss)[: end - 1 - len(past_loss)]]
)
past_loss[ready_end : end - 1] = loss
loss = past_loss
else:
past_loss = loss
if idx:
past_key_values = [
[k[:, :, : end - iterative_size], v[:, :, : end - iterative_size]]
for k, v in past_key_values
]
else:
past_key_values = None
if condition_compare:
self_loss, self_past_key_values = self.get_ppl(
"",
"token",
self_compressed_input_ids,
self_compressed_attention_mask,
past_key_values=self_past_key_values,
return_kv=True,
end=end - start if idx else None,
)
if self_past_loss is not None:
if end - start - 1 > len(self_past_loss):
self_past_loss = torch.cat(
[
self_past_loss,
torch.zeros_like(self_loss)[
: end - 1 - start - len(self_past_loss)
],
]
)
self_past_loss[self_ready_end : end - start - 1] = self_loss
self_loss = self_past_loss
else:
self_past_loss = self_loss
if idx:
self_past_key_values = [
[
k[:, :, : end - iterative_size - start],
v[:, :, : end - iterative_size - start],
]
for k, v in self_past_key_values
]
else:
self_past_key_values = None
self_ready_end = (
end - start - iterative_size if not (start and idx == 0) else 0
)
ready_end = end - iterative_size if not (start and idx == 0) else 0
for delta_end, ratio in iterative_ratios[idx]:
loss = past_loss
if condition_compare:
self_loss = self_past_loss
threshold = self.get_estimate_threshold_base_distribution(
self_loss[: loss[start:].shape[0]] - loss[start:], ratio, False
)
else:
threshold = self.get_estimate_threshold_base_distribution(
loss, ratio, False
)
(
compressed_input_ids,
compressed_attention_mask,
keep_flag,
end,
past_loss,
self_past_loss,
self_compressed_input_ids,
self_compressed_attention_mask,
) = self.get_compressed_input(
loss,
compressed_input_ids,
compressed_attention_mask,
end - iterative_size + delta_end,
iterative_size=delta_end,
threshold=threshold,
keep_flag=keep_flag,
split_token_id=split_token_id,
start=start,
self_loss=self_loss if condition_compare else None,
self_input_ids=(
self_compressed_input_ids if condition_compare else None
),
self_attention_mask=(
self_compressed_attention_mask if condition_compare else None
),
)
end += iterative_size
idx += 1
if pop_compressed_input_ids is not None:
compressed_input_ids = torch.cat(
[pop_compressed_input_ids, compressed_input_ids], dim=-1
)
return compressed_input_ids[:, start:], compressed_attention_mask[:, start:]
def recover(
self,
original_prompt: str,
compressed_prompt: str,
response: str,
):
def match_from_compressed(response_word):
response_input_ids = self.tokenizer(
response_word, add_special_tokens=False
)["input_ids"] # tokenize response compress
# response_c là mảng các index tương ứng của response compress llm match với original prompt
response_set, response_c = set(response_input_ids), defaultdict(list) # Loại bỏ các từ lặp lại nhiều lần
for idx in range(M): # M = len word original prompt
if original_input_ids[idx] in response_set: # Nếu word trong original prompt nằm trong response compress llm
response_c[original_input_ids[idx]].append(idx)
res, res_min, res_c = None, float("inf"), 1
n = len(response_input_ids)
for l in response_c[response_input_ids[0]]:
x, y, c = 0, l, 1
for x in range(1, n):
idx = bisect.bisect_right(response_c[response_input_ids[x]], y)
if (
idx >= len(response_c[response_input_ids[x]])
or response_c[response_input_ids[x]][idx] - y > 10
):
continue
c += 1
y = response_c[response_input_ids[x]][idx]
if c > res_c:
res_c = c
res_min = y - l + 1
res = (l, y + 1)
elif c == res_c and y - l + 1 < res_min:
res_min = y - l + 1
res = (l, y + 1)
if res is None:
return response_word
# while l > 0 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
# l -= 1
# while r < M - 1 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
# l -= 1
return self.tokenizer.decode(original_input_ids[res[0] : res[1]]) # các word trong original prompt ko có trong compress prompt
response_words = response.split(" ") # split word trong response compress
original_input_ids = self.tokenizer(original_prompt, add_special_tokens=False)[
"input_ids"
] # tokenize original prompt thành input_ids
N, M = len(response_words), len(original_input_ids) # len word response compress, len word original prompt
recovered_response_words = []
l = 0
while l < N:
if response_words[l] not in compressed_prompt: # Nếu word trong response compress ko có trong compressed_prompt thì thêm vào output
recovered_response_words.append(response_words[l])
l += 1
continue
r = l
while (
r + 1 < N and " ".join(response_words[l : r + 2]) in compressed_prompt
):
r += 1
match_words = match_from_compressed(" ".join(response_words[l : r + 1]))
recovered_response_words.append(match_words) # Thêm các word được match tương ứng từ response llm compress và original prompt vào trong output
l = r + 1
return " ".join(recovered_response_words)
def get_rank_results(
self,
context: list,
question: str,
rank_method: str,
condition_in_question: str,
context_tokens_length: list,
):
def get_distance_bm25(corpus, query):
from rank_bm25 import BM25Okapi
tokenized_corpus = [doc.split(" ") for doc in corpus]
bm25 = BM25Okapi(tokenized_corpus)
tokenized_query = query.split(" ")
doc_scores = bm25.get_scores(tokenized_query)
idx = [(ii, 0) for ii in (-doc_scores).argsort()]
return idx
def get_distance_gzip(corpus, query):
def get_score(x, y):
cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
cxy = len(gzip.compress(f"{x} {y}".encode()))
return (cxy - min(cx, cy)) / max(cx, cy)
import gzip
doc_scores = [get_score(doc, query) for doc in corpus]
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_sentbert(corpus, query):
from sentence_transformers import SentenceTransformer, util
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(corpus)
query = self.retrieval_model.encode(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_openai(corpus, query):
import openai
from sentence_transformers import util
openai.api_key = self.open_api_config.get("api_key", "")
openai.api_base = self.open_api_config.get(
"api_base", "https://api.openai.com/v1"
)
openai.api_type = self.open_api_config.get("api_type", "open_ai")
openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
engine = self.open_api_config.get("engine", "text-embedding-ada-002")
def get_embed(text):
return openai.Embedding.create(
input=[text.replace("\n", " ")], engine=engine
)["data"][0]["embedding"]
doc_embeds = [get_embed(i) for i in corpus]
query = get_embed(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_sentbert_bge(corpus, query):
from sentence_transformers import SentenceTransformer, util
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(
[i for i in corpus], normalize_embeddings=True
)
query = self.retrieval_model.encode(query, normalize_embeddings=True)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_bge_ranker(corpus, query):
from transformers import AutoModelForSequenceClassification, AutoTokenizer
pairs = [[i, query] for i in corpus]
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
model = (
AutoModelForSequenceClassification.from_pretrained(
"BAAI/bge-reranker-large"
)
.eval()
.to(self.device)
)
self.retrieval_model = [tokenizer, model]
self.retrieval_model_name = rank_method
with torch.no_grad():
inputs = self.retrieval_model[0](
pairs,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
scores = (
self.retrieval_model[1](**inputs, return_dict=True)
.logits.view(
-1,
)
.float()
)
idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
return idx
def get_distance_bge_llmembedder(corpus, query):
from transformers import AutoModel, AutoTokenizer
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
model = (
AutoModel.from_pretrained("BAAI/llm-embedder")
.eval()
.to(self.device)
)
self.retrieval_model = [tokenizer, model]
self.retrieval_model_name = rank_method
instruction_qa_query = (
"Represent this query for retrieving relevant documents: "
)
instruction_qa_key = "Represent this document for retrieval: "
queries = [instruction_qa_query + query for _ in corpus]
keys = [instruction_qa_key + key for key in corpus]
with torch.no_grad():
query_inputs = self.retrieval_model[0](
queries,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
key_inputs = self.retrieval_model[0](
keys,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
query_outputs = self.retrieval_model[1](**query_inputs)
key_outputs = self.retrieval_model[1](**key_inputs)
# CLS pooling
query_embeddings = query_outputs.last_hidden_state[:, 0]
key_embeddings = key_outputs.last_hidden_state[:, 0]
# Normalize
query_embeddings = torch.nn.functional.normalize(
query_embeddings, p=2, dim=1
)
key_embeddings = torch.nn.functional.normalize(
key_embeddings, p=2, dim=1
)
similarity = query_embeddings @ key_embeddings.T
idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
return idx
def get_distance_jinza(corpus, query):
from numpy.linalg import norm
from transformers import AutoModel
def cos_sim(a, b):
return (a @ b.T) / (norm(a) * norm(b))
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
model = (
AutoModel.from_pretrained(
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
)
.eval()
.to(self.device)
)
self.retrieval_model = model
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(corpus)
query = self.retrieval_model.encode(query)
doc_scores = cos_sim(doc_embeds, query)
idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
return idx
def get_distance_voyageai(corpus, query):
import voyageai
from sentence_transformers import util
voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")
def get_embed(text):
return voyageai.get_embedding(text, model="voyage-01")
doc_embeds = [get_embed(i) for i in corpus]
query = get_embed(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_cohere(corpus, query):
import cohere
api_key = self.open_api_config.get("cohere_api_key", "")
co = cohere.Client(api_key)
results = co.rerank(
model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
)
c_map = {jj: ii for ii, jj in enumerate(corpus)}
doc_rank = [c_map[ii.document["text"]] for ii in results]
idx = [(ii, 0) for ii in doc_rank]
return idx
def get_distance_longllmlingua(corpus, query):
context_ppl = [
self.get_condition_ppl(
d,
query
+ " We can get the answer to this question in the given documents.",
condition_in_question,
)
- dl * 2 / 250 * 0
for d, dl in zip(corpus, context_tokens_length)
]
sort_direct = -1 if condition_in_question == "none" else 1
ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
return ys
method = None
if rank_method == "bm25":
method = get_distance_bm25
elif rank_method == "gzip":
method = get_distance_gzip
elif rank_method == "sentbert":
method = get_distance_sentbert
elif rank_method == "openai":
method = get_distance_openai
elif rank_method in ["longllmlingua", "llmlingua"]:
method = get_distance_longllmlingua
elif rank_method == "bge":
method = get_distance_sentbert_bge
elif rank_method == "bge_reranker":
method = get_distance_bge_ranker
elif rank_method == "bge_llmembedder":
method = get_distance_bge_llmembedder
elif rank_method == "jinza":
method = get_distance_jinza
elif rank_method == "voyageai":
method = get_distance_voyageai
elif rank_method == "cohere":
method = get_distance_cohere
return method(context, question)
def segment_structured_context(
self,
context: List[str],
global_rate: float,
):
new_context, context_segs, context_segs_rate, context_segs_compress = (
[],
[],
[],
[],
)
for text in context:
if not text.startswith("<llmlingua"):
text = "<llmlingua>" + text
if not text.endswith("</llmlingua>"):
text = text + "</llmlingua>"
# Regular expression to match <llmlingua, rate=x, compress=y>content</llmlingua>, allowing rate and compress in any order
pattern = r"<llmlingua\s*(?:,\s*rate\s*=\s*([\d\.]+))?\s*(?:,\s*compress\s*=\s*(True|False))?\s*(?:,\s*rate\s*=\s*([\d\.]+))?\s*(?:,\s*compress\s*=\s*(True|False))?\s*>([^<]+)</llmlingua>"
matches = re.findall(pattern, text)
# Extracting segment contents
segments = [match[4] for match in matches]
# Extracting rate and compress, considering their possible positions
segs_rate = [
float(match[0]) if match[0] else (float(match[2]) if match[2] else None)
for match in matches
]
segs_compress = [
(
match[1] == "True"
if match[1]
else (match[3] == "True" if match[3] else None)
)
for match in matches
]
segs_compress = [
compress if compress is not None else True for compress in segs_compress
]
segs_rate = [
rate if rate else (global_rate if compress else 1.0)
for rate, compress in zip(segs_rate, segs_compress)
]
assert (
len(segments) == len(segs_rate) == len(segs_compress)
), "The number of segments, rates, and compress flags should be the same."
assert all(
seg_rate <= 1.0 for seg_rate in segs_rate
), "Error: 'rate' must not exceed 1.0. The value of 'rate' indicates compression rate and must be within the range [0, 1]."
new_context.append("".join(segments))
context_segs.append(segments)
context_segs_rate.append(segs_rate)
context_segs_compress.append(segs_compress)
return new_context, context_segs, context_segs_rate, context_segs_compress
def concate_segment_info(
self,
segment_info: List[List[tuple]],
):
new_segment_info = []
for i, (seg_len, seg_ratio, seg_compress) in enumerate(segment_info):
if (
new_segment_info
and new_segment_info[-1][1] == seg_ratio
and new_segment_info[-1][2] == seg_compress
):
new_segment_info[-1] = (
new_segment_info[-1][0] + seg_len,
seg_ratio,
seg_compress,
)
else:
new_segment_info.append((seg_len, seg_ratio, seg_compress))
return new_segment_info
def __get_context_prob( # Sử dụng trong context-level
self,
context_list: list,
token_to_word="mean", # mode to convert
force_tokens: List[str] = [],
token_map: dict = {},
force_reserve_digit: bool = False,
):
chunk_list = []
for chunks in context_list:
for c in chunks:
chunk_list.append(c) # list chunk
dataset = TokenClfDataset(
chunk_list, tokenizer=self.tokenizer, max_len=self.max_seq_len
)
dataloader = DataLoader(
dataset, batch_size=self.max_batch_size, shuffle=False, drop_last=False
)
chunk_probs = []
chunk_words = []
with torch.no_grad(): # inference
for batch in dataloader:
ids = batch["ids"].to(self.device, dtype=torch.long)
mask = batch["mask"].to(self.device, dtype=torch.long) == 1
outputs = self.model(input_ids=ids, attention_mask=mask)
loss, logits = outputs.loss, outputs.logits
probs = F.softmax(logits, dim=-1)
for j in range(ids.shape[0]):
_probs = probs[j, :, 1]
_ids = ids[j]
_mask = mask[j]
active_probs = torch.masked_select(_probs, _mask)
#print('active_probs: ', active_probs)
active_ids = torch.masked_select(_ids, _mask)
#print('active_ids: ', active_ids) # lst ids
tokens = self.tokenizer.convert_ids_to_tokens( # chuyển ids sang tokens
active_ids.squeeze().tolist()
)
#print('token: ', tokens)
token_probs = [prob for prob in active_probs.cpu().numpy()] # lst prob
(
words,
valid_token_probs,
valid_token_probs_no_force,
) = self.__merge_token_to_word( # chuyển tokens sang words (gộp các subword thành word hoàn chỉnh)
tokens,
token_probs,
force_tokens=force_tokens,
token_map=token_map,
force_reserve_digit=force_reserve_digit,
)
#print('words: ', words)
word_probs_no_force = self.__token_prob_to_word_prob(
valid_token_probs_no_force, convert_mode=token_to_word
)
#print('word_probs_no_force: ', word_probs_no_force) # lst các prob
#if "xlm-roberta-large" in self.model_name:
if "xlm-roberta" in self.model_name:
for i in range(len(words)):
words[i] = words[i].lstrip("▁")
elif "phobert" in self.model_name:
#if "phobert" in self.model_name:
for i in range(len(words)):
words[i] = words[i].lstrip("▁")
# Append words, probs theo chunk
chunk_words.append(words)
chunk_probs.append(word_probs_no_force)
prev_idx = 0
# append words, probs theo context
context_probs = []
context_words = []
for chunk_list in context_list: # list chunk context
n_chunk = len(chunk_list)
context_probs.append([])
context_words.append([])
for i in range(n_chunk):
context_probs[-1].extend(chunk_probs[prev_idx + i])
context_words[-1].extend(chunk_words[prev_idx + i])
prev_idx = prev_idx + n_chunk
context_probs = [sum(probs) / len(probs) for probs in context_probs]
return context_probs, context_words
# Hàm chia chunk trong llmlingua2
def __chunk_context(self, origin_text, chunk_end_tokens):
origin_list = []
origin_tokens = self.tokenizer.tokenize(origin_text)
n = len(origin_tokens)
st = 0
while st < n:
if st + self.max_seq_len > n - 1:
chunk = self.tokenizer.convert_tokens_to_string(origin_tokens[st:n])
origin_list.append(chunk)
break
else:
ed = st + self.max_seq_len
for j in range(0, ed - st):
if origin_tokens[ed - j] in chunk_end_tokens:
ed = ed - j
break
chunk = self.tokenizer.convert_tokens_to_string(
origin_tokens[st : ed + 1]
)
origin_list.append(chunk)
st = ed + 1
return origin_list
def __merge_token_to_word( # Từ tokens chuyển thành từng word
self, tokens, token_probs, force_tokens, token_map, force_reserve_digit
):
words = []
#words = ['.']
word_probs = []
word_probs_no_force = []
for token, prob in zip(tokens, token_probs): # duyệt từng token trong một câu
if token in self.special_tokens:
continue
# add a new word
elif is_begin_of_new_word(token, self.model_name, force_tokens, token_map): # Nếu True thì mới thực hiện (trả về True)
pure_token = get_pure_token(token, self.model_name) # thêm nguyên từ gốc vào list
#print('pure token 1: ', pure_token)
prob_no_force = prob
if pure_token in force_tokens or pure_token in set(token_map.values()):
prob = 1.0
token = replace_added_token(token, token_map) # xlm-roberta # thay thế token
#token = get_pure_token(token, self.model_name) # phobert
#print('words 1 before: ', words)
words.append(token)
#print('words 1 after: ', words)
word_probs.append(
[
1.0
if force_reserve_digit and bool(re.search(r"\d", token))
else prob
]
)
word_probs_no_force.append([prob_no_force])
# concatenate with previous token # False thì mới vào flow này
else: # phải is_begin_of_new_word phải True trước # pure token thường là digit
pure_token = get_pure_token(token, self.model_name) # hàm get pure token trả về token gốc (sau khi loại bỏ kí tự đặc biệt subword)
#print('pure token 2: ', pure_token)
#print('words 2 before: ', words)
words[-1] += pure_token # thêm từ gốc vào đằng sau từ ở cuối list (thêm vào từ ko hoàn chỉnh vào cuối)
#print('words 2 after: ', words)
word_probs[-1].append(
1.0
if force_reserve_digit and bool(re.search(r"\d", token))
else prob
)
word_probs_no_force[-1].append(prob_no_force)
#break #
#print("word: ", words)
return words, word_probs, word_probs_no_force # trả về các từ (subword) dưới dạng list
def __token_prob_to_word_prob(self, token_probs, convert_mode="mean"): # chuyển xác suất kí tự sang xác suất của từng từ
if convert_mode == "mean":
word_probs = [sum(p) / len(p) for p in token_probs]
elif convert_mode == "first":
word_probs = [p[0] for p in token_probs]
else:
raise NotImplementedError()
return word_probs
def __compress( # compress method llmlingua2 (token level) (xử lý cả filter context level)
self,
context_list: list,
reduce_rate: float = 0.5,
token_to_word: str = "mean",
force_tokens: List[str] = [],
token_map: dict = {},
force_reserve_digit: bool = False,
drop_consecutive: bool = False,
):
def split_string_to_words(input_string):
pattern = r'\b\w+\b|[<>=/!@#$%^&*()?":{}|\\`~;_+-]'
result = re.findall(pattern, input_string)
return result
if reduce_rate <= 0: # default luôn là 0.5 (>0)
words, word_labels = [], []
for i in range(len(context_list)):
chunk_list = context_list[i] # tách thành các chunk
chunk_words = []
chunk_word_labels = []
for j in range(len(chunk_list)):
# replace to original token
for ori_token, new_token in token_map.items():
chunk_list[j] = chunk_list[j].replace(new_token, ori_token)
ws = split_string_to_words(chunk_list[j])
chunk_words.extend(ws)
chunk_word_labels.extend([1 for _ in range(len(ws))])
context_list[i] = "".join(chunk_list)
words.append(chunk_words)
word_labels.append(chunk_word_labels)
return context_list, words, word_labels
chunk_list = []
for chunks in context_list:
for c in chunks:
chunk_list.append(c) # tách thành các chunk
dataset = TokenClfDataset(
chunk_list, tokenizer=self.tokenizer, max_len=self.max_seq_len
)
dataloader = DataLoader(
dataset, batch_size=self.max_batch_size, shuffle=False, drop_last=False
)
compressed_chunk_list = []
word_list = []
word_label_list = []
with torch.no_grad(): # giống phần trước
for batch in dataloader: # phobert cần token_type_ids
#print("batch 0: ", batch)
#print("batch input_ids shape: ", batch["ids"].shape)
#print("batch attention_mask shape: ", batch["mask"].shape)
ids = batch["ids"].to(self.device, dtype=torch.long)
mask = batch["mask"].to(self.device, dtype=torch.long) == 1
outputs = self.model(input_ids=ids, attention_mask=mask)
loss, logits = outputs.loss, outputs.logits
probs = F.softmax(logits, dim=-1)
for j in range(ids.shape[0]):
chunk_probs = probs[j, :, 1]
chunk_ids = ids[j]
chunk_mask = mask[j]
active_probs = torch.masked_select(chunk_probs, chunk_mask)
active_ids = torch.masked_select(chunk_ids, chunk_mask)
tokens = self.tokenizer.convert_ids_to_tokens( # list các tokens
active_ids.squeeze().tolist()
)
token_probs = [prob for prob in active_probs.cpu().numpy()]
words, valid_token_probs, _ = self.__merge_token_to_word( # chuyển tokens sang words
tokens=tokens,
token_probs=token_probs,
force_tokens=force_tokens,
token_map=token_map,
force_reserve_digit=force_reserve_digit,
)
word_probs = self.__token_prob_to_word_prob(
valid_token_probs, convert_mode=token_to_word
)
if drop_consecutive: # filtering (default = False)
threshold = np.percentile(word_probs, int(100 * reduce_rate))
is_token_between = False
prev = None
for i, (word, word_prob) in enumerate(zip(words, word_probs)):
if word in force_tokens:
if is_token_between:
is_token_between = False
elif not is_token_between and word == prev:
word_probs[i] = 0.0
prev = word
else:
is_token_between |= word_prob > threshold
#print('is_token_between: ', is_token_between)
new_token_probs = []
for word, word_prob in zip(words, word_probs): # duyệt từng từ và prob tương ứng
num_token = len(self.oai_tokenizer.encode(word))
new_token_probs.extend([word_prob for _ in range(num_token)])
#print('new_token_probs: ', new_token_probs)
threshold = np.percentile(
new_token_probs, int(100 * reduce_rate + 1)
)
keep_words = []
word_labels = []
assert len(words) == len(word_probs)
for word, word_porb in zip(words, word_probs):
if word_porb > threshold:
if (
drop_consecutive
and word in force_tokens
and len(keep_words) > 0
and keep_words[-1] == word
):
word_labels.append(0)
else:
keep_words.append(word)
word_labels.append(1)
else:
word_labels.append(0)
#print('keep_words: ', keep_words) # Các word được giữ lại
#print('word_labels: ', word_labels) # các labels tương ứng
keep_str = self.tokenizer.convert_tokens_to_string(keep_words) # chuyển các token thành các string
#print('keep str: ', keep_str) # Từng string context được giữ lại
#if "xlm-roberta-large" in self.model_name:
if "xlm-roberta" in self.model_name:
for i in range(len(words)):
words[i] = words[i].lstrip("▁")
elif "phobert" in self.model_name:
#if "phobert" in self.model_name:
for i in range(len(words)):
words[i] = words[i].lstrip("▁")
compressed_chunk_list.append(keep_str) # append các compress chunjk trong một context dài
word_list.append(words[:])
word_label_list.append(word_labels[:])
#print('compressed_chunk_list: ', compressed_chunk_list)
#print('word_list: ', word_list)
#print('word_label_list: ', word_label_list)
compressed_context_list = []
original_word_list = []
original_word_label_list = []
prev_idx = 0
# append các chunk vào context
for chunk_list in context_list:
n_chunk = len(chunk_list)
compressed_context_list.append(
"".join(compressed_chunk_list[prev_idx : prev_idx + n_chunk])
)
original_word_list.append([])
original_word_label_list.append([])
for i in range(n_chunk):
original_word_list[-1].extend(word_list[prev_idx + i])
original_word_label_list[-1].extend(word_label_list[prev_idx + i])
prev_idx = prev_idx + n_chunk
return compressed_context_list, original_word_list, original_word_label_list |