import gradio as gr import matplotlib.pyplot as plt def plot_forecast(num_param, precision, grad_ckpt, batch_size, seq_len): # Convert number (input as B) num_param = float(num_param) * 1e9 # Convert precision to bytes precision = {"float32": 4, "float16": 2, "bfloat16": 2}[precision] # Model Parameters: N×precision y1 = num_param * precision / 1e9 # Optimizer States: 2×N×precision y2 = 2 * num_param * precision / 1e9 # Activations: B×Sequence Length×K×precision K = 4.6894e-4 * num_param + 1.8494e6 y3 = batch_size * seq_len * K * precision / 1e9 if grad_ckpt: y3 /= 5 # Gradients: N×precision y4 = num_param * precision / 1e9 # Optimizer intermediates: N×precision y5 = num_param * precision / 1e9 # Calculate total memory total_memory = y1 + y2 + max(y3, y4 + y5) fig = plt.figure(figsize=(4, 4)) ax = fig.add_subplot(111) # Create stacked bars bar_width = 0.5 ax.bar(0, y1, width=bar_width, color="r") ax.bar(0, y2, bottom=y1, width=bar_width, color="b") ax.bar(-bar_width / 4, y3, bottom=y1 + y2, width=bar_width / 2, color="g") ax.bar(bar_width / 4, y4, bottom=y1 + y2, width=bar_width / 2, color="y") ax.bar(bar_width / 4, y5, bottom=y1 + y2 + y4, width=bar_width / 2, color="c") # Add text labels inside the bars ax.text(0, y1 / 2, f"Model Parameters ({y1:.1f} GB)", ha="center", va="center", color="white", fontweight="bold") ax.text( 0, y1 + y2 / 2, f"Optimizer States ({y2:.1f} GB)", ha="center", va="center", color="white", fontweight="bold" ) ax.text( -bar_width / 4, y1 + y2 + y3 / 2, f"Activations\n({y3:.1f} GB)", ha="center", va="center", color="white", fontweight="bold", ) ax.text( bar_width / 4, y1 + y2 + y4 / 2, f"Gradients\n({y4:.1f} GB)", ha="center", va="center", color="white", fontweight="bold", ) ax.text( bar_width / 4, y1 + y2 + y4 + y5 / 2, f"Optimizer\nintermediates\n({y5:.1f} GB)", ha="center", va="center", color="white", fontweight="bold", ) # Or as title ax.set_title(f"Total Memory: {total_memory:.1f} GB", fontweight="bold") # Remove x-axis ax.xaxis.set_visible(False) # Set GB as the unit for the y-axis ax.set_ylabel("Memory (GB)") # Adjust layout fig.tight_layout() return fig with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Accordion("Model"): num_param = gr.Number(3, label="Number of parameters (B)") precision = gr.Radio(["float32", "float16", "bfloat16"], value="float32", label="Precision") with gr.Accordion("Data"): batch_size = gr.Slider(1, 128, label="Batch size", step=1, value=8) seq_len = gr.Slider(1, 1000, label="Sequence Length", step=1, value=256) with gr.Accordion("Advanced", open=False): with gr.Accordion("Data"): grad_ckpt = gr.Checkbox(False, label="Gradient Checkpointing") submit = gr.Button("Submit") with gr.Column(): plot = gr.Plot(label="forecast", format="png") submit.click(plot_forecast, [num_param, precision, grad_ckpt, batch_size, seq_len], plot) if __name__ == "__main__": demo.launch()