|
import os |
|
import json |
|
import requests |
|
import gradio as gr |
|
import pandas as pd |
|
from huggingface_hub import HfApi, hf_hub_download, snapshot_download |
|
from huggingface_hub.repocard import metadata_load |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from tqdm.contrib.concurrent import thread_map |
|
from utils import * |
|
|
|
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/drlc-leaderboard-data" |
|
DATASET_REPO_ID = "huggingface-projects/drlc-leaderboard-data" |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
block = gr.Blocks() |
|
api = HfApi(token=HF_TOKEN) |
|
|
|
|
|
rl_envs = [ |
|
{"rl_env_beautiful": "LunarLander-v2 π", "rl_env": "LunarLander-v2", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "CartPole-v1", "rl_env": "CartPole-v1", "video_link": "https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4", "global": None}, |
|
{"rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery βοΈ", "rl_env": "FrozenLake-v1-4x4-no_slippery", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery βοΈ", "rl_env": "FrozenLake-v1-8x8-no_slippery", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "FrozenLake-v1-4x4 βοΈ", "rl_env": "FrozenLake-v1-4x4", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "FrozenLake-v1-8x8 βοΈ", "rl_env": "FrozenLake-v1-8x8", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "Taxi-v3 π", "rl_env": "Taxi-v3", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "CarRacing-v0 ποΈ", "rl_env": "CarRacing-v0", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "CarRacing-v2 ποΈ", "rl_env": "CarRacing-v2", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "MountainCar-v0 β°οΈ", "rl_env": "MountainCar-v0", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πΎ", "rl_env": "SpaceInvadersNoFrameskip-v4", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "PongNoFrameskip-v4 πΎ", "rl_env": "PongNoFrameskip-v4", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "BreakoutNoFrameskip-v4 π§±", "rl_env": "BreakoutNoFrameskip-v4", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "QbertNoFrameskip-v4 π¦", "rl_env": "QbertNoFrameskip-v4", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "BipedalWalker-v3", "rl_env": "BipedalWalker-v3", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "Walker2DBulletEnv-v0", "rl_env": "Walker2DBulletEnv-v0", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "AntBulletEnv-v0", "rl_env": "AntBulletEnv-v0", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "HalfCheetahBulletEnv-v0", "rl_env": "HalfCheetahBulletEnv-v0", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "PandaReachDense-v2", "rl_env": "PandaReachDense-v2", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "PandaReachDense-v3", "rl_env": "PandaReachDense-v3", "video_link": "", "global": None}, |
|
{"rl_env_beautiful": "Pixelcopter-PLE-v0", "rl_env": "Pixelcopter-PLE-v0", "video_link": "", "global": None} |
|
] |
|
|
|
|
|
|
|
def restart(): |
|
"""Restart the Hugging Face Space.""" |
|
print("RESTARTING SPACE...") |
|
api.restart_space(repo_id="huggingface-projects/Deep-Reinforcement-Learning-Leaderboard") |
|
|
|
def download_leaderboard_dataset(): |
|
"""Download leaderboard dataset once at startup.""" |
|
print("Downloading leaderboard dataset...") |
|
return snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset") |
|
|
|
def get_metadata(model_id): |
|
"""Fetch metadata for a given model from Hugging Face.""" |
|
try: |
|
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180) |
|
return metadata_load(readme_path) |
|
except requests.exceptions.HTTPError: |
|
return None |
|
|
|
def parse_metrics_accuracy(meta): |
|
"""Extract accuracy metrics from metadata.""" |
|
if "model-index" not in meta: |
|
return None |
|
result = meta["model-index"][0]["results"] |
|
metrics = result[0]["metrics"] |
|
return metrics[0]["value"] |
|
|
|
def parse_rewards(accuracy): |
|
"""Extract mean and std rewards from accuracy metrics.""" |
|
default_std = -1000 |
|
default_reward = -1000 |
|
if accuracy is not None: |
|
parsed = str(accuracy).split('+/-') |
|
mean_reward = float(parsed[0].strip()) if parsed[0] else default_reward |
|
std_reward = float(parsed[1].strip()) if len(parsed) > 1 else 0 |
|
else: |
|
mean_reward, std_reward = default_reward, default_std |
|
return mean_reward, std_reward |
|
|
|
def get_model_ids(rl_env): |
|
"""Retrieve models matching the given RL environment.""" |
|
return [x.modelId for x in api.list_models(filter=rl_env)] |
|
|
|
def update_leaderboard_dataset_parallel(rl_env, path): |
|
"""Parallelized update of leaderboard dataset for a given RL environment.""" |
|
model_ids = get_model_ids(rl_env) |
|
|
|
def process_model(model_id): |
|
meta = get_metadata(model_id) |
|
if not meta: |
|
return None |
|
user_id = model_id.split('/')[0] |
|
row = { |
|
"User": user_id, |
|
"Model": model_id, |
|
"Results": None, |
|
"Mean Reward": None, |
|
"Std Reward": None |
|
} |
|
accuracy = parse_metrics_accuracy(meta) |
|
mean_reward, std_reward = parse_rewards(accuracy) |
|
row["Results"] = mean_reward - std_reward |
|
row["Mean Reward"] = mean_reward |
|
row["Std Reward"] = std_reward |
|
return row |
|
|
|
data = list(thread_map(process_model, model_ids, desc="Processing models")) |
|
data = [row for row in data if row is not None] |
|
|
|
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data)) |
|
ranked_dataframe.to_csv(os.path.join(path, f"{rl_env}.csv"), index=False) |
|
|
|
return ranked_dataframe |
|
|
|
def rank_dataframe(dataframe): |
|
"""Sort models by results and assign ranking.""" |
|
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False) |
|
dataframe.insert(0, 'Ranking', range(1, len(dataframe) + 1)) |
|
return dataframe |
|
|
|
def run_update_dataset(): |
|
"""Update dataset periodically using the scheduler.""" |
|
path_ = download_leaderboard_dataset() |
|
for env in rl_envs: |
|
update_leaderboard_dataset_parallel(env["rl_env"], path_) |
|
|
|
print("Uploading updated dataset...") |
|
api.upload_folder( |
|
folder_path=path_, |
|
repo_id=DATASET_REPO_ID, |
|
repo_type="dataset", |
|
commit_message="Update dataset" |
|
) |
|
|
|
def filter_data(rl_env, path, user_id): |
|
"""Filter dataset for a specific user ID.""" |
|
data_df = pd.read_csv(os.path.join(path, f"{rl_env}.csv")) |
|
return data_df[data_df["User"] == user_id] |
|
|
|
|
|
|
|
print("Initializing dataset...") |
|
path_ = download_leaderboard_dataset() |
|
|
|
with block: |
|
gr.Markdown(""" |
|
# π Deep Reinforcement Learning Course Leaderboard π |
|
|
|
This leaderboard displays trained agents from the [Deep Reinforcement Learning Course](https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt). |
|
|
|
**Models are ranked using `mean_reward - std_reward`.** |
|
|
|
If you can't find your model, please wait for the next update (every 2 hours). |
|
""") |
|
|
|
grpath = gr.State(path_) |
|
|
|
for env in rl_envs: |
|
with gr.TabItem(env["rl_env_beautiful"]): |
|
gr.Markdown(f"## {env['rl_env_beautiful']}") |
|
user_id = gr.Textbox(label="Your user ID") |
|
search_btn = gr.Button("Search π") |
|
reset_btn = gr.Button("Clear Search") |
|
env_state = gr.State(env["rl_env"]) |
|
|
|
gr_dataframe = gr.Dataframe( |
|
value=pd.read_csv(os.path.join(path_, f"{env['rl_env']}.csv")), |
|
headers=["Ranking π", "User π€", "Model π€", "Results", "Mean Reward", "Std Reward"], |
|
datatype=["number", "markdown", "markdown", "number", "number", "number"], |
|
|
|
row_count=(100,"dynamic") |
|
|
|
) |
|
|
|
|
|
search_btn.click(fn=filter_data, inputs=[env_state, grpath, user_id], outputs=gr_dataframe) |
|
reset_btn.click(fn=lambda: pd.read_csv(os.path.join(path_, f"{env['rl_env']}.csv")), inputs=[], outputs=gr_dataframe) |
|
|
|
|
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(run_update_dataset, 'interval', hours=2) |
|
scheduler.add_job(restart, 'interval', hours=3) |
|
scheduler.start() |
|
|
|
block.launch() |
|
|