Spaces:
Sleeping
Sleeping
File size: 4,497 Bytes
f1d3421 0318995 4879b2a 1331b8a 4879b2a 1331b8a 4879b2a ad5e2a1 4879b2a ded0246 ad5e2a1 0eb9662 1d5b074 ad5e2a1 1d5b074 ad5e2a1 4879b2a ad5e2a1 4879b2a ad5e2a1 4879b2a ad5e2a1 4879b2a ad5e2a1 4879b2a 6a8f0b2 4879b2a 528220d 4879b2a 40103e2 ad5e2a1 40103e2 e40a495 6a8f0b2 e40a495 5031463 528220d 6a8f0b2 1331b8a ad5e2a1 4879b2a ad5e2a1 4879b2a ad5e2a1 4879b2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.50.2")
from huggingface_hub import InferenceClient
import gradio as gr
"""
Chat engine.
TODOs:
- Better prompts.
- Output reader / parser.
- Agents for evaluation and task planning / splitting.
* Haystack for orchestration
- Tools for agents
* Haystack for orchestration
-
"""
selected_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
client = InferenceClient(selected_model)
def format_prompt(query, history, lookback):
prompt = "Responses should be no more than 100 words long.\n"
for previous_query, prevous_completion in history[-lookback:]:
prompt += f"<s>[INST] {previous_query} [/INST] {prevous_completion}</s> "
prompt += f"[INST] {query} [/INST]"
return prompt
def query_submit(user_message, history):
return "", history + [[user_message, None]]
def query_completion(
query,
history,
lookback = 3,
max_new_tokens = 256,
):
generateKwargs = dict(
max_new_tokens = max_new_tokens,
seed = 1337,
)
formatted_query = format_prompt(query, history, lookback)
stream = client.text_generation(
formatted_query,
**generateKwargs,
stream = True,
details = True,
return_full_text = False
)
history[-1][1] = ""
for response in stream:
history[-1][1] += response.token.text
yield history
def retry_query(
history,
lookback = 3,
max_new_tokens = 256,
):
if not history:
pass
else:
query = history[-1][0]
history[-1][1] = None
generateKwargs = dict(
max_new_tokens = max_new_tokens,
seed = 1337,
)
formatted_query = format_prompt(query, history, lookback)
stream = client.text_generation(
formatted_query,
**generateKwargs,
stream = True,
details = True,
return_full_text = False
)
history[-1][1] = ""
for response in stream:
history[-1][1] += response.token.text
yield history
"""
Chat UI using Gradio Blocks.
Blocks preferred for "lower-level" layout control and state management.
TODOs:
- State management for dynamic components update.
- Add scratchpad readout to the right of chat log.
* Placeholder added for now.
- Add functionality to retry button.
* Placeholder added for now.
- Add dropdown for model selection.
* Placeholder added for now.
"""
with gr.Blocks() as chatUI:
# gr.State()
with gr.Row():
modelSelect = gr.Dropdown(
label = "Model selection:",
scale = 0.5,
)
with gr.Row():
chatOutput = gr.Chatbot(
bubble_full_width = False,
scale = 2
)
agentWhiteBoard = gr.Markdown(scale = 1)
with gr.Row():
queryInput = gr.Textbox(
placeholder = "Please enter you question or request here...",
show_label = False,
scale = 4,
)
submitButton = gr.Button("Submit", scale = 1)
with gr.Row():
fileUpload = gr.File(
height = 100,
)
retryButton = gr.Button("Retry")
clearButton = gr.ClearButton([queryInput, chatOutput])
with gr.Row():
with gr.Accordion(label = "Expand for edit system prompt:"):
systemPrompt = gr.Textbox(
value = "System prompt here (null)",
show_label = False,
lines = 4,
scale = 4,
)
"""
Event functions
"""
queryInput.submit(
fn = query_submit,
inputs = [queryInput, chatOutput],
outputs = [queryInput, chatOutput],
queue = False,
).then(
fn = query_completion,
inputs = [queryInput, chatOutput],
outputs = [chatOutput],
)
submitButton.click(
fn = query_submit,
inputs = [queryInput, chatOutput],
outputs = [queryInput, chatOutput],
queue = False,
).then(
fn = query_completion,
inputs = [queryInput, chatOutput],
outputs = [chatOutput],
)
retryButton.click(
fn = retry_query,
inputs = [chatOutput],
outputs = [chatOutput],
)
chatUI.queue()
chatUI.launch(show_api = False) |