person9601's picture
ok arg used in def needs to be described in description Args
295f62e verified
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import os
# Access the token from environment variables
#hf_token = os.environ.get("HF_TOKEN")
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
# ok my tool gets weather for <city>
from dotenv import load_dotenv
import os
# Load environment variables from .env file (used for def my_custom_get_weather_info)
load_dotenv()
@tool
#Keep this format for the description / args / args description but feel free to modify
#it's import to specify the return type
#(arg1:str, arg2:int)-> str:
# the tool
# """A tool that does nothing yet
# Args:
# arg1: the first argument
# arg2: the second argument
# """
# return "What magic will you build ?"
def my_custom_get_weather_info(city: str) -> str:
"""A tool that fetches current weather information for a specified city.
Args:
city: City name or location (e.g., 'New York', 'Buffalo,NY', 'London,UK', 'London,ON', 'London,Canada')
"""
try:
# Get API key from environment variables
api_key = os.getenv("WEATHER_APIKEY")
if not api_key:
return "Error: WEATHER_APIKEY not found in environment variables"
# WeatherAPI.com endpoint
base_url = "http://api.weatherapi.com/v1/current.json"
params = {
"key": api_key,
"q": city,
}
response = requests.get(base_url, params=params)
data = response.json()
if response.status_code == 200:
# Extract data from the WeatherAPI.com response format
temp_c = data["current"]["temp_c"]
temp_f = data["current"]["temp_f"]
condition = data["current"]["condition"]["text"]
last_updated = data["current"]["last_updated"]
# Extract location information
location_name = data["location"]["name"]
country = data["location"]["country"]
# Build location string with all available geographic details
location_info = f"{location_name}, {country}"
# Add region/state/province if available
if "region" in data["location"] and data["location"]["region"]:
location_info = f"{location_name}, {data['location']['region']}, {country}"
# Format the output with both temperature units and location details
return f"Weather in {location_info}:\n{condition}\nTemperature: {temp_c}°C / {temp_f}°F\nLocal Time: {last_updated}"
else:
error_msg = data.get("error", {}).get("message", "Unknown error")
return f"Error getting weather data: {error_msg}"
except Exception as e:
return f"Failed to retrieve weather information: {str(e)}"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
#model_id='microsoft/Phi-4-mini-instruct',
#not needed if secret added HF_TOKEN and then just api keyy is value api_token=os.environ.get("HF_TOKEN"),
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[
my_custom_get_weather_info,
get_current_time_in_timezone,
image_generation_tool,
final_answer
],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()