Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,12 @@ import numpy as np
|
|
7 |
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
8 |
import cv2
|
9 |
import traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
class RafayyVirtualTryOn:
|
12 |
def __init__(self):
|
@@ -17,23 +23,29 @@ class RafayyVirtualTryOn:
|
|
17 |
gc.collect()
|
18 |
|
19 |
# Use smaller model for stability
|
|
|
20 |
self.inpaint_model = StableDiffusionInpaintPipeline.from_pretrained(
|
21 |
-
|
22 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
23 |
-
safety_checker=None
|
|
|
24 |
)
|
25 |
|
26 |
if torch.cuda.is_available():
|
27 |
self.inpaint_model.to("cuda")
|
28 |
-
self.inpaint_model.enable_attention_slicing()
|
29 |
|
30 |
# Initialize segmentation with error handling
|
31 |
try:
|
32 |
self.segmenter = SegformerForSemanticSegmentation.from_pretrained(
|
33 |
"mattmdjaga/segformer_b2_clothes",
|
34 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
-
self.processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
|
37 |
except Exception as e:
|
38 |
print(f"Segmentation model loading error: {str(e)}")
|
39 |
raise
|
@@ -42,112 +54,23 @@ class RafayyVirtualTryOn:
|
|
42 |
print(f"Initialization error: {str(e)}")
|
43 |
raise
|
44 |
|
45 |
-
|
46 |
-
"""Safely preprocess input image"""
|
47 |
-
try:
|
48 |
-
if isinstance(image, np.ndarray):
|
49 |
-
image = Image.fromarray(image)
|
50 |
-
|
51 |
-
# Ensure image is RGB
|
52 |
-
if image.mode != "RGB":
|
53 |
-
image = image.convert("RGB")
|
54 |
-
|
55 |
-
# Resize if too large
|
56 |
-
max_size = 768
|
57 |
-
if max(image.size) > max_size:
|
58 |
-
ratio = max_size / max(image.size)
|
59 |
-
new_size = tuple(int(dim * ratio) for dim in image.size)
|
60 |
-
image = image.resize(new_size, Image.LANCZOS)
|
61 |
-
|
62 |
-
return image
|
63 |
-
except Exception as e:
|
64 |
-
raise gr.Error(f"Image preprocessing failed: {str(e)}")
|
65 |
-
|
66 |
-
def get_clothing_mask(self, image):
|
67 |
-
"""Safely extract clothing mask"""
|
68 |
-
try:
|
69 |
-
# Convert to RGB if needed
|
70 |
-
if isinstance(image, np.ndarray):
|
71 |
-
image = Image.fromarray(image)
|
72 |
-
if image.mode != "RGB":
|
73 |
-
image = image.convert("RGB")
|
74 |
-
|
75 |
-
inputs = self.processor(images=image, return_tensors="pt")
|
76 |
-
|
77 |
-
# Move to GPU if available
|
78 |
-
if torch.cuda.is_available():
|
79 |
-
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
80 |
-
self.segmenter = self.segmenter.to("cuda")
|
81 |
-
|
82 |
-
outputs = self.segmenter(**inputs)
|
83 |
-
logits = outputs.logits.squeeze()
|
84 |
-
|
85 |
-
# Move back to CPU for numpy operations
|
86 |
-
if torch.cuda.is_available():
|
87 |
-
logits = logits.cpu()
|
88 |
-
|
89 |
-
clothing_mask = (logits.argmax(0) == 5).float().numpy()
|
90 |
-
clothing_mask = (clothing_mask * 255).astype(np.uint8)
|
91 |
-
|
92 |
-
# Enhance mask
|
93 |
-
kernel = np.ones((5,5), np.uint8)
|
94 |
-
clothing_mask = cv2.dilate(clothing_mask, kernel, iterations=1)
|
95 |
-
clothing_mask = cv2.GaussianBlur(clothing_mask, (5,5), 0)
|
96 |
-
|
97 |
-
return Image.fromarray(clothing_mask)
|
98 |
-
except Exception as e:
|
99 |
-
raise gr.Error(f"Mask generation failed: {str(e)}")
|
100 |
|
101 |
-
|
102 |
-
|
|
|
103 |
try:
|
104 |
-
|
105 |
-
raise gr.Error("Please upload an image first")
|
106 |
-
if not prompt or prompt.strip() == "":
|
107 |
-
raise gr.Error("Please provide a clothing description")
|
108 |
-
|
109 |
-
progress(0.1, desc="Preprocessing image...")
|
110 |
-
original_image = self.preprocess_image(image)
|
111 |
-
|
112 |
-
progress(0.3, desc="Detecting clothing...")
|
113 |
-
mask = self.get_clothing_mask(original_image)
|
114 |
-
|
115 |
-
# Clear GPU memory
|
116 |
-
if torch.cuda.is_available():
|
117 |
-
torch.cuda.empty_cache()
|
118 |
-
gc.collect()
|
119 |
-
|
120 |
-
progress(0.5, desc="Preparing generation...")
|
121 |
-
# Enhanced prompt engineering
|
122 |
-
full_prompt = f"A person wearing {prompt}, professional photo, detailed, realistic, high quality"
|
123 |
-
negative_prompt = "low quality, blurry, distorted, deformed, bad anatomy, unrealistic"
|
124 |
-
|
125 |
-
progress(0.7, desc="Generating new clothing...")
|
126 |
-
try:
|
127 |
-
result = self.inpaint_model(
|
128 |
-
prompt=full_prompt,
|
129 |
-
negative_prompt=negative_prompt,
|
130 |
-
image=original_image,
|
131 |
-
mask_image=mask,
|
132 |
-
num_inference_steps=30, # Reduced for stability
|
133 |
-
guidance_scale=7.5 * style_strength
|
134 |
-
).images[0]
|
135 |
-
except torch.cuda.OutOfMemoryError:
|
136 |
-
torch.cuda.empty_cache()
|
137 |
-
gc.collect()
|
138 |
-
raise gr.Error("Out of memory. Please try with a smaller image.")
|
139 |
-
|
140 |
-
progress(1.0, desc="Done!")
|
141 |
-
return result
|
142 |
-
|
143 |
except Exception as e:
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
147 |
|
148 |
-
# Initialize model with error handling
|
149 |
try:
|
150 |
-
model =
|
151 |
except Exception as e:
|
152 |
print(f"Model initialization failed: {str(e)}")
|
153 |
raise
|
@@ -186,7 +109,7 @@ demo = gr.Interface(
|
|
186 |
cache_examples=True
|
187 |
)
|
188 |
|
189 |
-
# Launch with error handling
|
190 |
if __name__ == "__main__":
|
191 |
try:
|
192 |
demo.launch(
|
@@ -194,7 +117,9 @@ if __name__ == "__main__":
|
|
194 |
server_name="0.0.0.0",
|
195 |
server_port=7860,
|
196 |
show_error=True,
|
197 |
-
enable_queue=True
|
|
|
|
|
198 |
)
|
199 |
except Exception as e:
|
200 |
print(f"Launch failed: {str(e)}")
|
|
|
7 |
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
8 |
import cv2
|
9 |
import traceback
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Set environment variables to prevent warnings and errors
|
13 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
14 |
+
os.environ['TORCH_HOME'] = '/tmp/torch'
|
15 |
+
os.environ['HF_HOME'] = '/tmp/huggingface'
|
16 |
|
17 |
class RafayyVirtualTryOn:
|
18 |
def __init__(self):
|
|
|
23 |
gc.collect()
|
24 |
|
25 |
# Use smaller model for stability
|
26 |
+
model_id = "runwayml/stable-diffusion-inpainting"
|
27 |
self.inpaint_model = StableDiffusionInpaintPipeline.from_pretrained(
|
28 |
+
model_id,
|
29 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
30 |
+
safety_checker=None,
|
31 |
+
cache_dir='/tmp/models'
|
32 |
)
|
33 |
|
34 |
if torch.cuda.is_available():
|
35 |
self.inpaint_model.to("cuda")
|
36 |
+
self.inpaint_model.enable_attention_slicing()
|
37 |
|
38 |
# Initialize segmentation with error handling
|
39 |
try:
|
40 |
self.segmenter = SegformerForSemanticSegmentation.from_pretrained(
|
41 |
"mattmdjaga/segformer_b2_clothes",
|
42 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
43 |
+
cache_dir='/tmp/models'
|
44 |
+
)
|
45 |
+
self.processor = SegformerImageProcessor.from_pretrained(
|
46 |
+
"mattmdjaga/segformer_b2_clothes",
|
47 |
+
cache_dir='/tmp/models'
|
48 |
)
|
|
|
49 |
except Exception as e:
|
50 |
print(f"Segmentation model loading error: {str(e)}")
|
51 |
raise
|
|
|
54 |
print(f"Initialization error: {str(e)}")
|
55 |
raise
|
56 |
|
57 |
+
# ... (rest of the code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# Initialize model with error handling and retry mechanism
|
60 |
+
def initialize_model(max_retries=3):
|
61 |
+
for attempt in range(max_retries):
|
62 |
try:
|
63 |
+
return RafayyVirtualTryOn()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
except Exception as e:
|
65 |
+
if attempt == max_retries - 1:
|
66 |
+
print(f"Failed to initialize model after {max_retries} attempts: {str(e)}")
|
67 |
+
raise
|
68 |
+
print(f"Attempt {attempt + 1} failed, retrying...")
|
69 |
+
torch.cuda.empty_cache()
|
70 |
+
gc.collect()
|
71 |
|
|
|
72 |
try:
|
73 |
+
model = initialize_model()
|
74 |
except Exception as e:
|
75 |
print(f"Model initialization failed: {str(e)}")
|
76 |
raise
|
|
|
109 |
cache_examples=True
|
110 |
)
|
111 |
|
112 |
+
# Launch with error handling and retry mechanism
|
113 |
if __name__ == "__main__":
|
114 |
try:
|
115 |
demo.launch(
|
|
|
117 |
server_name="0.0.0.0",
|
118 |
server_port=7860,
|
119 |
show_error=True,
|
120 |
+
enable_queue=True,
|
121 |
+
cache_examples=True,
|
122 |
+
max_threads=4
|
123 |
)
|
124 |
except Exception as e:
|
125 |
print(f"Launch failed: {str(e)}")
|