noxo8888's picture
Create app.py
4fafe9d verified
raw
history blame
7.32 kB
import gradio as gr
import torch
import gc
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
import cv2
import traceback
class RafayyVirtualTryOn:
def __init__(self):
try:
# Clear CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Use smaller model for stability
self.inpaint_model = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
safety_checker=None # Disable safety checker if causing issues
)
if torch.cuda.is_available():
self.inpaint_model.to("cuda")
self.inpaint_model.enable_attention_slicing() # Reduce memory usage
# Initialize segmentation with error handling
try:
self.segmenter = SegformerForSemanticSegmentation.from_pretrained(
"mattmdjaga/segformer_b2_clothes",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
self.processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
except Exception as e:
print(f"Segmentation model loading error: {str(e)}")
raise
except Exception as e:
print(f"Initialization error: {str(e)}")
raise
def preprocess_image(self, image):
"""Safely preprocess input image"""
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Ensure image is RGB
if image.mode != "RGB":
image = image.convert("RGB")
# Resize if too large
max_size = 768
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
return image
except Exception as e:
raise gr.Error(f"Image preprocessing failed: {str(e)}")
def get_clothing_mask(self, image):
"""Safely extract clothing mask"""
try:
# Convert to RGB if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if image.mode != "RGB":
image = image.convert("RGB")
inputs = self.processor(images=image, return_tensors="pt")
# Move to GPU if available
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
self.segmenter = self.segmenter.to("cuda")
outputs = self.segmenter(**inputs)
logits = outputs.logits.squeeze()
# Move back to CPU for numpy operations
if torch.cuda.is_available():
logits = logits.cpu()
clothing_mask = (logits.argmax(0) == 5).float().numpy()
clothing_mask = (clothing_mask * 255).astype(np.uint8)
# Enhance mask
kernel = np.ones((5,5), np.uint8)
clothing_mask = cv2.dilate(clothing_mask, kernel, iterations=1)
clothing_mask = cv2.GaussianBlur(clothing_mask, (5,5), 0)
return Image.fromarray(clothing_mask)
except Exception as e:
raise gr.Error(f"Mask generation failed: {str(e)}")
def try_on(self, image, prompt, style_strength=0.7, progress=gr.Progress()):
"""Main try-on function with comprehensive error handling"""
try:
if image is None:
raise gr.Error("Please upload an image first")
if not prompt or prompt.strip() == "":
raise gr.Error("Please provide a clothing description")
progress(0.1, desc="Preprocessing image...")
original_image = self.preprocess_image(image)
progress(0.3, desc="Detecting clothing...")
mask = self.get_clothing_mask(original_image)
# Clear GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
progress(0.5, desc="Preparing generation...")
# Enhanced prompt engineering
full_prompt = f"A person wearing {prompt}, professional photo, detailed, realistic, high quality"
negative_prompt = "low quality, blurry, distorted, deformed, bad anatomy, unrealistic"
progress(0.7, desc="Generating new clothing...")
try:
result = self.inpaint_model(
prompt=full_prompt,
negative_prompt=negative_prompt,
image=original_image,
mask_image=mask,
num_inference_steps=30, # Reduced for stability
guidance_scale=7.5 * style_strength
).images[0]
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
gc.collect()
raise gr.Error("Out of memory. Please try with a smaller image.")
progress(1.0, desc="Done!")
return result
except Exception as e:
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_msg) # For logging
raise gr.Error(str(e))
# Initialize model with error handling
try:
model = RafayyVirtualTryOn()
except Exception as e:
print(f"Model initialization failed: {str(e)}")
raise
# Create Gradio interface with error handling
demo = gr.Interface(
fn=model.try_on,
inputs=[
gr.Image(label="πŸ“Έ Upload Your Photo", type="numpy"),
gr.Textbox(
label="🎨 Describe New Clothing",
placeholder="e.g., 'elegant black suit', 'red dress'",
lines=2
),
gr.Slider(
label="Style Strength",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1
)
],
outputs=gr.Image(label="✨ Result", type="pil"),
title="🌟 Rafayy's Virtual Try-On Studio 🌟",
description="""
<div style="text-align: center;">
<h3>Transform Your Style with AI</h3>
<p>Upload a photo and describe the new clothing you want to try on!</p>
</div>
""",
examples=[
["example1.jpg", "black suit", 0.7],
["example2.jpg", "white dress", 0.7]
],
allow_flagging="never",
cache_examples=True
)
# Launch with error handling
if __name__ == "__main__":
try:
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
enable_queue=True
)
except Exception as e:
print(f"Launch failed: {str(e)}")
raise