Spaces:
Runtime error
Runtime error
Commit
·
4ac4e3b
1
Parent(s):
fafff42
quick fix
Browse files
app.py
CHANGED
@@ -4,19 +4,31 @@ import numpy as np
|
|
4 |
import glob
|
5 |
import warnings
|
6 |
import pandas as pd
|
7 |
-
|
8 |
|
|
|
9 |
from huggingface_hub.keras_mixin import from_pretrained_keras
|
10 |
|
11 |
# load model
|
12 |
-
model = from_pretrained_keras(
|
|
|
|
|
13 |
|
14 |
# Examples
|
15 |
samples = []
|
16 |
-
input_images = glob.glob(
|
17 |
-
examples = [
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def visualize_data(point_cloud, labels, output_path=None):
|
21 |
df = pd.DataFrame(
|
22 |
data={
|
@@ -31,9 +43,7 @@ def visualize_data(point_cloud, labels, output_path=None):
|
|
31 |
for index, label in enumerate(LABELS):
|
32 |
c_df = df[df["label"] == label]
|
33 |
try:
|
34 |
-
ax.scatter(
|
35 |
-
c_df["x"], c_df["y"], c_df["z"], label=label, alpha=0.5, c=COLORS[index]
|
36 |
-
)
|
37 |
except IndexError:
|
38 |
pass
|
39 |
ax.legend()
|
@@ -41,45 +51,45 @@ def visualize_data(point_cloud, labels, output_path=None):
|
|
41 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
42 |
plt.savefig(output_path)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
csv_path = file_obj.name
|
52 |
-
im_name = csv_path.split(
|
53 |
-
|
54 |
if os.path.exists(csv_path):
|
55 |
df = pd.read_csv(csv_path, index_col=None)
|
56 |
-
inputs = df[[
|
57 |
y_test = df.iloc[:, 3:].values
|
58 |
else:
|
59 |
-
warnings.warn(f
|
60 |
return
|
61 |
|
62 |
-
|
63 |
preds = model.predict(np.expand_dims(inputs, 0))[0]
|
64 |
label_map = LABELS + ["none"]
|
65 |
-
visualize_data(inputs, [label_map[np.argmax(label)] for label in preds], f
|
66 |
-
return f
|
|
|
67 |
|
68 |
article = "<div style='text-align: center;'><a href='https://nouamanetazi.me/' target='_blank'>Space by Nouamane Tazi</a><br><a href='https://keras.io/examples/vision/pointnet_segmentation' target='_blank'>Keras example by Soumik Rakshit, Sayak Paul</a></div>"
|
69 |
|
70 |
iface = gr.Interface(
|
71 |
-
inference,
|
72 |
-
inputs
|
73 |
-
gr.inputs.Image(label=
|
74 |
-
gr.inputs.Image(label=
|
75 |
-
"file"
|
76 |
-
|
|
|
|
|
77 |
],
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
title = 'Point cloud segmentation with PointNet',
|
83 |
-
article = article,
|
84 |
-
examples = examples,
|
85 |
-
).launch(enable_queue=True, cache_examples=True)
|
|
|
4 |
import glob
|
5 |
import warnings
|
6 |
import pandas as pd
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
|
9 |
+
from utils import OrthogonalRegularizer
|
10 |
from huggingface_hub.keras_mixin import from_pretrained_keras
|
11 |
|
12 |
# load model
|
13 |
+
model = from_pretrained_keras(
|
14 |
+
"keras-io/pointnet_segmentation", custom_objects={"OrthogonalRegularizer": OrthogonalRegularizer}
|
15 |
+
)
|
16 |
|
17 |
# Examples
|
18 |
samples = []
|
19 |
+
input_images = glob.glob("asset/source/*.png")
|
20 |
+
examples = [
|
21 |
+
[
|
22 |
+
im,
|
23 |
+
f"asset/ground_truth/{im.split('/')[-1].split('.')[0]}.png",
|
24 |
+
f"asset/source/{im.split('/')[-1].split('.')[0]}.csv",
|
25 |
+
]
|
26 |
+
for im in input_images
|
27 |
+
]
|
28 |
+
LABELS = ["wing", "body", "tail", "engine"]
|
29 |
+
COLORS = ["blue", "green", "red", "pink"]
|
30 |
+
|
31 |
+
|
32 |
def visualize_data(point_cloud, labels, output_path=None):
|
33 |
df = pd.DataFrame(
|
34 |
data={
|
|
|
43 |
for index, label in enumerate(LABELS):
|
44 |
c_df = df[df["label"] == label]
|
45 |
try:
|
46 |
+
ax.scatter(c_df["x"], c_df["y"], c_df["z"], label=label, alpha=0.5, c=COLORS[index])
|
|
|
|
|
47 |
except IndexError:
|
48 |
pass
|
49 |
ax.legend()
|
|
|
51 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
52 |
plt.savefig(output_path)
|
53 |
|
54 |
+
|
55 |
+
def inference(
|
56 |
+
im_path,
|
57 |
+
truth_path,
|
58 |
+
file_obj,
|
59 |
+
output_path="asset/output",
|
60 |
+
cpu=False,
|
61 |
+
):
|
62 |
|
63 |
csv_path = file_obj.name
|
64 |
+
im_name = csv_path.split("/")[-1].split(".")[0]
|
65 |
+
|
66 |
if os.path.exists(csv_path):
|
67 |
df = pd.read_csv(csv_path, index_col=None)
|
68 |
+
inputs = df[["x", "y", "z"]].values
|
69 |
y_test = df.iloc[:, 3:].values
|
70 |
else:
|
71 |
+
warnings.warn(f"{csv_path} not found for {im_path}")
|
72 |
return
|
73 |
|
|
|
74 |
preds = model.predict(np.expand_dims(inputs, 0))[0]
|
75 |
label_map = LABELS + ["none"]
|
76 |
+
visualize_data(inputs, [label_map[np.argmax(label)] for label in preds], f"{output_path}/{im_name}.png")
|
77 |
+
return f"{output_path}/{im_name}.png"
|
78 |
+
|
79 |
|
80 |
article = "<div style='text-align: center;'><a href='https://nouamanetazi.me/' target='_blank'>Space by Nouamane Tazi</a><br><a href='https://keras.io/examples/vision/pointnet_segmentation' target='_blank'>Keras example by Soumik Rakshit, Sayak Paul</a></div>"
|
81 |
|
82 |
iface = gr.Interface(
|
83 |
+
inference, # main function
|
84 |
+
inputs=[
|
85 |
+
gr.inputs.Image(label="Image", type="filepath"),
|
86 |
+
gr.inputs.Image(label="Ground Truth", type="filepath"),
|
87 |
+
"file",
|
88 |
+
],
|
89 |
+
outputs=[
|
90 |
+
gr.outputs.Image(label="result"), # generated image
|
91 |
],
|
92 |
+
title="Point cloud segmentation with PointNet",
|
93 |
+
article=article,
|
94 |
+
examples=examples,
|
95 |
+
).launch(enable_queue=True, cache_examples=True)
|
|
|
|
|
|
|
|
utils.py
CHANGED
@@ -1,5 +1,7 @@
|
|
|
|
1 |
from tensorflow import keras
|
2 |
|
|
|
3 |
class OrthogonalRegularizer(keras.regularizers.Regularizer):
|
4 |
"""Reference: https://keras.io/examples/vision/pointnet/#build-a-model"""
|
5 |
|
@@ -12,9 +14,7 @@ class OrthogonalRegularizer(keras.regularizers.Regularizer):
|
|
12 |
identity = tf.cast(self.identity, x.dtype)
|
13 |
x = tf.reshape(x, (tf.shape(x)[0], self.num_features, self.num_features))
|
14 |
xxt = tf.tensordot(x, x, axes=(2, 2))
|
15 |
-
xxt = tf.reshape(
|
16 |
-
xxt, (tf.shape(x)[0] * tf.shape(x)[0], self.num_features, self.num_features)
|
17 |
-
)
|
18 |
return tf.reduce_sum(self.l2reg * tf.square(xxt - identity))
|
19 |
|
20 |
def get_config(self):
|
|
|
1 |
+
import tensorflow as tf
|
2 |
from tensorflow import keras
|
3 |
|
4 |
+
|
5 |
class OrthogonalRegularizer(keras.regularizers.Regularizer):
|
6 |
"""Reference: https://keras.io/examples/vision/pointnet/#build-a-model"""
|
7 |
|
|
|
14 |
identity = tf.cast(self.identity, x.dtype)
|
15 |
x = tf.reshape(x, (tf.shape(x)[0], self.num_features, self.num_features))
|
16 |
xxt = tf.tensordot(x, x, axes=(2, 2))
|
17 |
+
xxt = tf.reshape(xxt, (tf.shape(x)[0] * tf.shape(x)[0], self.num_features, self.num_features))
|
|
|
|
|
18 |
return tf.reduce_sum(self.l2reg * tf.square(xxt - identity))
|
19 |
|
20 |
def get_config(self):
|