R3GAN / train.py
multimodalart's picture
Upload 44 files
d35ea9a verified
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import click
import re
import json
import tempfile
import torch
import dnnlib
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
#----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
if c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
#----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
#----------------------------------------------------------------------------
def init_dataset_kwargs(data):
try:
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
#----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
@click.command()
# Required.
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True)
@click.option('--data', help='Training data', metavar='[ZIP|DIR]', type=str, required=True)
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--preset', help='Preset configs', metavar='STR', type=str, required=True)
# Optional features.
@click.option('--cond', help='Train conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--mirror', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--aug', help='Enable Augmentation', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
# Misc hyperparameters.
@click.option('--g-batch-gpu', help='Limit batch size per GPU for G', metavar='INT', type=click.IntRange(min=1))
@click.option('--d-batch-gpu', help='Limit batch size per GPU for D', metavar='INT', type=click.IntRange(min=1))
# Misc settings.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=10000000, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=4, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True)
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True)
def main(**kwargs):
# Initialize config.
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(class_name='training.networks.Generator')
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks.Discriminator')
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.R3GANLoss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2)
# Training set.
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data)
if opts.cond and not c.training_set_kwargs.use_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
c.training_set_kwargs.use_labels = opts.cond
c.training_set_kwargs.xflip = opts.mirror
# Hyperparameters & settings.
c.num_gpus = opts.gpus
c.batch_size = opts.batch
c.g_batch_gpu = opts.g_batch_gpu or opts.batch // opts.gpus
c.d_batch_gpu = opts.d_batch_gpu or opts.batch // opts.gpus
if opts.preset == 'CIFAR10':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]]
FP16Stages = [-1, -2, -3]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 5000 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.55, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 0.05, 'final_value': 0.005, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'FFHQ-64':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
ema_nimg = 500 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 2, 'final_value': 0.2, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'FFHQ-256':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512, 256, 128]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16, 8, 4]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
ema_nimg = 500 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 150, 'final_value': 15, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'ImageNet-32':
WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]]
FP16Stages = [-1, -2, -3]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 50000 * 1000
decay_nimg = 2e8
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.5, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 0.5, 'final_value': 0.05, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'ImageNet-64':
WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 32]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 50000 * 1000
decay_nimg = 2e8
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.4, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 1, 'final_value': 0.1, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
c.G_kwargs.NoiseDimension = NoiseDimension
c.G_kwargs.WidthPerStage = WidthPerStage
c.G_kwargs.CardinalityPerStage = CardinalityPerStage
c.G_kwargs.BlocksPerStage = BlocksPerStage
c.G_kwargs.ExpansionFactor = 2
c.G_kwargs.FP16Stages = FP16Stages
c.D_kwargs.WidthPerStage = [*reversed(WidthPerStage)]
c.D_kwargs.CardinalityPerStage = [*reversed(CardinalityPerStage)]
c.D_kwargs.BlocksPerStage = [*reversed(BlocksPerStage)]
c.D_kwargs.ExpansionFactor = 2
c.D_kwargs.FP16Stages = [x + len(FP16Stages) for x in FP16Stages]
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.g_batch_gpu) != 0 or c.batch_size % (c.num_gpus * c.d_batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
# Augmentation.
if opts.aug:
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=0.5, contrast=0.5, lumaflip=0.5, hue=0.5, saturation=0.5, cutout=1)
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
# Performance-related toggles.
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
desc = f'{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------