Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModel | |
def forward_process(batch, prompt_index, mask_id): | |
b, l = batch.shape | |
target_len = (l - prompt_index.sum()).item() | |
k = torch.randint(1, target_len + 1, (), device=batch.device) | |
x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long() | |
x = ((x - 1) % target_len) + 1 | |
assert x.min() >= 1 and x.max() <= target_len | |
indices = torch.arange(target_len, device=batch.device).repeat(b, 1) | |
is_mask = indices < x.unsqueeze(1) | |
for i in range(b): | |
is_mask[i] = is_mask[i][torch.randperm(target_len)] | |
is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1) | |
noisy_batch = torch.where(is_mask, mask_id, batch) | |
# Return the masked batch and the mask ratio | |
return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l) | |
def get_logits(model, batch, prompt_index, cfg_scale, mask_id): | |
if cfg_scale > 0.: | |
assert len(prompt_index) == batch.shape[1] | |
prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1) | |
un_batch = batch.clone() | |
un_batch[prompt_index] = mask_id | |
batch = torch.cat([batch, un_batch]) | |
input = batch | |
logits = model(input).logits | |
if cfg_scale > 0.: | |
logits, un_logits = torch.chunk(logits, 2, dim=0) | |
logits = un_logits + (cfg_scale + 1) * (logits - un_logits) | |
return logits | |
def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=16, cfg_scale=0., mask_id=126336): | |
''' | |
Args: | |
model: Mask predictor. | |
prompt: A tensor of shape (l1). | |
answer: A tensor of shape (l2). | |
mc_num: Monte Carlo estimation times. | |
As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a | |
single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128 | |
Monte Carlo samples are adequate to produce stable results. | |
batch_size: Mini batch size. | |
cfg_scale: Unsupervised classifier-free guidance scale. | |
mask_id: The toke id of [MASK] is 126336. | |
''' | |
seq = torch.concatenate([prompt, answer])[None, :] | |
seq = seq.repeat((batch_size, 1)).to(model.device) | |
prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt) | |
loss_ = [] | |
for _ in range(mc_num // batch_size): | |
perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id) | |
mask_index = perturbed_seq == mask_id | |
logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id) | |
loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index] | |
loss = loss.sum() / batch_size | |
loss_.append(loss.item()) | |
return - sum(loss_) / len(loss_) | |
def main(): | |
device = 'cuda' | |
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval() | |
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True) | |
# this prompt and answer is from Hellaswag dataset | |
prompt = 'Roof shingle removal: A man is sitting on a roof. He' | |
answer = ' is using wrap to wrap a pair of skis.' | |
prompt = torch.tensor(tokenizer(prompt)['input_ids']).to(device) | |
answer = torch.tensor(tokenizer(answer)['input_ids']).to(device) | |
print(get_log_likelihood(model, prompt, answer, mc_num=128)) | |
if __name__ == '__main__': | |
main() |