Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor
|
3 |
+
from transformers import SiglipForImageClassification
|
4 |
+
from transformers.image_utils import load_image
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load model and processor
|
9 |
+
model_name = "prithivMLmods/AI-vs-Deepfake-vs-Real-Siglip2"
|
10 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
11 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
12 |
+
|
13 |
+
def image_classification(image):
|
14 |
+
"""Classifies an image as AI-generated, deepfake, or real."""
|
15 |
+
image = Image.fromarray(image).convert("RGB")
|
16 |
+
inputs = processor(images=image, return_tensors="pt")
|
17 |
+
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model(**inputs)
|
20 |
+
logits = outputs.logits
|
21 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
22 |
+
|
23 |
+
labels = model.config.id2label
|
24 |
+
predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
|
25 |
+
|
26 |
+
return predictions
|
27 |
+
|
28 |
+
# Create Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=image_classification,
|
31 |
+
inputs=gr.Image(type="numpy"),
|
32 |
+
outputs=gr.Label(label="Classification Result"),
|
33 |
+
title="AI vs Deepfake vs Real Image Classification",
|
34 |
+
description="Upload an image to determine whether it is AI-generated, a deepfake, or a real image."
|
35 |
+
)
|
36 |
+
|
37 |
+
# Launch the app
|
38 |
+
if __name__ == "__main__":
|
39 |
+
iface.launch()
|