Spaces:
Runtime error
Runtime error
import requests | |
import json | |
import gradio as gr | |
# from concurrent.futures import ThreadPoolExecutor | |
import pdfplumber | |
import pandas as pd | |
import langchain | |
import time | |
from cnocr import CnOcr | |
import pinecone | |
import openai | |
from langchain.vectorstores import Pinecone | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
# from langchain.document_loaders import PyPDFLoader | |
from langchain.document_loaders import UnstructuredWordDocumentLoader | |
from langchain.document_loaders import UnstructuredPowerPointLoader | |
# from langchain.document_loaders.image import UnstructuredImageLoader | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain import OpenAI | |
from sentence_transformers import SentenceTransformer, models, util | |
word_embedding_model = models.Transformer('sentence-transformers/all-MiniLM-L6-v2', do_lower_case=True) | |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls') | |
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model]) | |
ocr = CnOcr() | |
# chat_url = 'https://Raghav001-API.hf.space/sale' | |
chat_url = 'https://Raghav001-API.hf.space/chatpdf' | |
chat_emd = 'https://Raghav001-API.hf.space/embedd' | |
headers = { | |
'Content-Type': 'application/json', | |
} | |
# thread_pool_executor = ThreadPoolExecutor(max_workers=4) | |
history_max_len = 500 | |
all_max_len = 3000 | |
# Initialize Pinecone client and create an index | |
pinecone.init(api_key="ffb1f594-0915-4ebf-835f-c1eaa62fdcdc",environment = "us-west4-gcp-free") | |
index = pinecone.Index(index_name="test") | |
def get_emb(text): | |
emb_url = 'https://Raghav001-API.hf.space/embeddings' | |
data = {"content": text} | |
try: | |
result = requests.post(url=emb_url, | |
data=json.dumps(data), | |
headers=headers | |
) | |
print("--------------------------------Embeddings-----------------------------------") | |
print(result.json()['data'][0]['embedding']) | |
return result.json()['data'][0]['embedding'] | |
except Exception as e: | |
print('data', data, 'result json', result.json()) | |
def doc_emb(doc: str): | |
texts = doc.split('\n') | |
# futures = [] | |
emb_list = embedder.encode(texts) | |
print('emb_list',emb_list) | |
# for text in texts: | |
# futures.append(thread_pool_executor.submit(get_emb, text)) | |
# for f in futures: | |
# emb_list.append(f.result()) | |
print('\n'.join(texts)) | |
pine(doc) | |
gr.Textbox.update(value="") | |
return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update( | |
value="""success ! Let's talk"""), gr.Chatbot.update(visible=True) | |
def get_response(msg, bot, doc_text_list, doc_embeddings): | |
# future = thread_pool_executor.submit(get_emb, msg) | |
gr.Textbox.update(value="") | |
now_len = len(msg) | |
req_json = {'question': msg} | |
his_bg = -1 | |
for i in range(len(bot) - 1, -1, -1): | |
if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len: | |
break | |
now_len += len(bot[i][0]) + len(bot[i][1]) | |
his_bg = i | |
req_json['history'] = [] if his_bg == -1 else bot[his_bg:] | |
# query_embedding = future.result() | |
query_embedding = embedder.encode([msg]) | |
cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0] | |
score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])] | |
score_index.sort(key=lambda x: x[0], reverse=True) | |
print('score_index:\n', score_index) | |
print('doc_emb_state', doc_emb_state) | |
index_set, sub_doc_list = set(), [] | |
for s_i in score_index: | |
doc = doc_text_list[s_i[1]] | |
if now_len + len(doc) > all_max_len: | |
break | |
index_set.add(s_i[1]) | |
now_len += len(doc) | |
# Maybe the paragraph is truncated wrong, so add the upper and lower paragraphs | |
if s_i[1] > 0 and s_i[1] -1 not in index_set: | |
doc = doc_text_list[s_i[1]-1] | |
if now_len + len(doc) > all_max_len: | |
break | |
index_set.add(s_i[1]-1) | |
now_len += len(doc) | |
if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set: | |
doc = doc_text_list[s_i[1]+1] | |
if now_len + len(doc) > all_max_len: | |
break | |
index_set.add(s_i[1]+1) | |
now_len += len(doc) | |
index_list = list(index_set) | |
index_list.sort() | |
for i in index_list: | |
sub_doc_list.append(doc_text_list[i]) | |
req_json['doc'] = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list) | |
data = {"content": json.dumps(req_json)} | |
print('data:\n', req_json) | |
result = requests.post(url=chat_url, | |
data=json.dumps(data), | |
headers=headers | |
) | |
res = result.json()['content'] | |
bot.append([msg, res]) | |
return bot[max(0, len(bot) - 3):] | |
def up_file(fls): | |
doc_text_list = [] | |
names = [] | |
print(names) | |
for i in fls: | |
names.append(str(i.name)) | |
pdf = [] | |
docs = [] | |
pptx = [] | |
for i in names: | |
if i[-3:] == "pdf": | |
pdf.append(i) | |
elif i[-4:] == "docx": | |
docs.append(i) | |
else: | |
pptx.append(i) | |
#Pdf Extracting | |
for idx, file in enumerate(pdf): | |
print("11111") | |
#print(file.name) | |
with pdfplumber.open(file) as pdf: | |
for i in range(len(pdf.pages)): | |
# Read page i+1 of a PDF document | |
page = pdf.pages[i] | |
res_list = page.extract_text().split('\n')[:-1] | |
for j in range(len(page.images)): | |
# Get the binary stream of the image | |
img = page.images[j] | |
file_name = '{}-{}-{}.png'.format(str(time.time()), str(i), str(j)) | |
with open(file_name, mode='wb') as f: | |
f.write(img['stream'].get_data()) | |
try: | |
res = ocr.ocr(file_name) | |
# res = PyPDFLoader(file_name) | |
except Exception as e: | |
res = [] | |
if len(res) > 0: | |
res_list.append(' '.join([re['text'] for re in res])) | |
tables = page.extract_tables() | |
for table in tables: | |
# The first column is used as the header | |
df = pd.DataFrame(table[1:], columns=table[0]) | |
try: | |
records = json.loads(df.to_json(orient="records", force_ascii=False)) | |
for rec in records: | |
res_list.append(json.dumps(rec, ensure_ascii=False)) | |
except Exception as e: | |
res_list.append(str(df)) | |
doc_text_list += res_list | |
#pptx Extracting | |
for i in pptx: | |
loader = UnstructuredPowerPointLoader(i) | |
data = loader.load() | |
# content = str(data).split("'") | |
# cnt = content[1] | |
# # c = cnt.split('\\n\\n') | |
# # final = "".join(c) | |
# c = cnt.replace('\\n\\n',"").replace("<PAGE BREAK>","").replace("\t","") | |
doc_text_list.append(data) | |
#Doc Extracting | |
for i in docs: | |
loader = UnstructuredWordDocumentLoader(i) | |
data = loader.load() | |
# content = str(data).split("'") | |
# cnt = content[1] | |
# # c = cnt.split('\\n\\n') | |
# # final = "".join(c) | |
# c = cnt.replace('\\n\\n',"").replace("<PAGE BREAK>","").replace("\t","") | |
doc_text_list.append(data) | |
# #Image Extraction | |
# for i in jpg: | |
# loader = UnstructuredImageLoader(i) | |
# data = loader.load() | |
# # content = str(data).split("'") | |
# # cnt = content[1] | |
# # # c = cnt.split('\\n\\n') | |
# # # final = "".join(c) | |
# # c = cnt.replace('\\n\\n',"").replace("<PAGE BREAK>","").replace("\t","") | |
# doc_text_list.append(data) | |
doc_text_list = [str(text).strip() for text in doc_text_list if len(str(text).strip()) > 0] | |
# print(doc_text_list) | |
return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update( | |
visible=True), gr.Markdown.update( | |
value="Processing") | |
def pine(data): | |
char_text_spliter = CharacterTextSplitter(chunk_size = 1000, chunk_overlap=0) | |
# doc_text = char_text_spliter.split_documents(data) | |
doc_spilt = [] | |
data = data.split(" ") | |
# print(len(data)) | |
c = 0 | |
check = 0 | |
for i in data: | |
# print(i) | |
if c == 350: | |
text = " ".join(data[check: check + c]) | |
print(text) | |
print(check) | |
doc_spilt.append(text) | |
check = check + c | |
c = 0 | |
else: | |
c = c+1 | |
Embedding_model = "text-embedding-ada-002" | |
embeddings = OpenAIEmbeddings(openai_api_key=OpenAI_key) | |
print(requests.post(url = chat_emd)) | |
# embeddings = requests.post(url=chat_emd, | |
# data=json.dumps(data), | |
# headers=headers | |
# ) | |
pinecone.init(api_key = "ffb1f594-0915-4ebf-835f-c1eaa62fdcdc", | |
environment = "us-west4-gcp-free" | |
) | |
index_name = "test" | |
docstore = Pinecone.from_texts([d for d in doc_spilt],embeddings,index_name = index_name,namespace='a1') | |
return '' | |
def get_answer(query_live): | |
llm = OpenAI(temperature=0, openai='aaa') | |
qa_chain = load_qa_chain(llm,chain_type='stuff') | |
query = query_live | |
docs = docstore.similarity_search(query) | |
qa_chain.run(input_documents = docs, question = query) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
file = gr.File(file_types=['.pdf'], label='Click to upload Document', file_count='multiple') | |
doc_bu = gr.Button(value='Submit', visible=False) | |
txt = gr.Textbox(label='result', visible=False) | |
doc_text_state = gr.State([]) | |
doc_emb_state = gr.State([]) | |
with gr.Column(): | |
md = gr.Markdown("Please Upload the PDF") | |
chat_bot = gr.Chatbot(visible=False) | |
msg_txt = gr.Textbox(visible = False) | |
chat_bu = gr.Button(value='Clear', visible=False) | |
file.change(up_file, [file], [txt, doc_bu, md]) #hiding the text | |
doc_bu.click(doc_emb, [txt], [doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot]) | |
msg_txt.submit(get_response, [msg_txt, chat_bot,doc_text_state, doc_emb_state], [chat_bot],queue=False) | |
chat_bu.click(lambda: None, None, chat_bot, queue=False) | |
if __name__ == "__main__": | |
demo.queue().launch(show_api=False) | |
# demo.queue().launch(share=False, server_name='172.22.2.54', server_port=9191) |