import gradio as gr import torch import numpy as np import pandas as pd from tqdm import tqdm from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification description_sentence = "

Demo EmotioNL

\nThis demo allows you to analyse the emotion in a sentence." description2 = "

Demo EmotioNL

\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected." inference_modelpath = "model/checkpoint-128" """ output_dir = "model" model_config = { "model_weights": "pdelobelle/robbert-v2-dutch-base", "num_labels": 6, "max_length": 128, "device": "cpu" } ## Tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_config["model_weights"]) model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath) # Function for encoding (tokenizing) data def encode_data(data): text = data["text"] label = data["label"] encoded_input = tokenizer( text, add_special_tokens=True, max_length= model_config["max_length"], padding= "max_length", return_overflowing_tokens=True, truncation=True ) encoded_input["labels"] = label return encoded_input # Test arguments for Trainer test_args = TrainingArguments( output_dir = output_dir, do_train = False, do_predict = True, per_device_eval_batch_size = 64, dataloader_drop_last = False ) trainer = Trainer( model = model, args = test_args) def inference_dataset(file_object): #input_file = open(file_object.name, 'r') input_file = file_object data_paths = {"train": input_file, "inference": input_file} dataset = load_dataset('csv', skiprows=1, data_files=data_paths, column_names = ['id', 'text', 'label'], delimiter='\t') encoded_dataset = dataset.map(encode_data, batched=True) encoded_dataset.set_format("torch") encoded_dataset["inference"] = encoded_dataset["inference"].remove_columns("label") # Run trainer in prediction mode prediction_output = trainer.predict(encoded_dataset["inference"]) predictions = prediction_output[0] ids = dataset["inference"]["id"] texts = dataset["inference"]["text"] preds = np.argmax(predictions, axis=1) preds = [model.config.id2label[pred] for pred in preds] predictions_content = list(zip(ids, texts, preds)) # write predictions to file output = "output.txt" f = open(output, 'w') f.write("id\ttext\tprediction\n") for line in predictions_content: f.write(str(line[0]) + '\t' + str(line[1]) + '\t' + str(line[2]) + '\n') f.close() return output """ def inference_dataset(file_object, option_list): tokenizer = AutoTokenizer.from_pretrained(inference_modelpath) model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath) data_path = open(file_object, 'r') df = pd.read_csv(data_path, delimiter='\t', header=0, names=['id', 'text']) ids = df["id"].tolist() texts = df["text"].tolist() preds = [] for text in tqdm(texts): # progressbar inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): # run model logits = model(**inputs).logits predicted_class_id = logits.argmax().item() prediction = model.config.id2label[predicted_class_id] preds.append(prediction) predictions_content = list(zip(ids, texts, preds)) # write predictions to file output = "output.txt" f = open(output, 'w') f.write("id\ttext\tprediction\n") for line in predictions_content: f.write(str(line[0]) + '\t' + str(line[1]) + '\t' + str(line[2]) + '\n') f.close() output1 = output output2 = output3 = output4 = output5 = "This option was not selected." if "emotion frequencies" in option_list: output2 = "This option was selected." if "emotion distribution over time" in option_list: output3 = "This option was selected." if "peaks" in option_list: output4 = "This option was selected." if "topics" in option_list: output5 = "This option was selected." return [output1, output2, output3, output4, output5] def what_happened(text, file_object, option_list): if file_object: output = "You uploaded a file." #if len(option_list) > 0: #output = output + "\nYou selected these options:\n- " + "\n- ".join(option_list) else: output = "Normally, this demo should analyse the emotions in this text:\n" + text if len(option_list) > 0: output = output + "\nYou can only select options when uploading a dataset." return output def what_happened1(text): output = "Normally, this demo should analyse the emotions in this text:\n" + text return output def what_happened2(file_object, option_list): #input_file = open(file_object.name, 'r') #lines = input_file.read() #input_file.close() #output_file = open('output.txt', 'w') #output_file.write(lines) #output_file.close() #output1 = 'output.txt' output1 = inference_dataset(file_object.name) output2 = output3 = output4 = output5 = "This option was not selected." if "emotion frequencies" in option_list: output2 = "This option was selected." if "emotion distribution over time" in option_list: output3 = "This option was selected." if "peaks" in option_list: output4 = "This option was selected." if "topics" in option_list: output5 = "This option was selected." return [output1, output2, output3, output4, output5] def inference_sentence(text): tokenizer = AutoTokenizer.from_pretrained(inference_modelpath) model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath) inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): # run model logits = model(**inputs).logits predicted_class_id = logits.argmax().item() output = model.config.id2label[predicted_class_id] return output iface0 = gr.Interface( fn=what_happened, inputs=[ gr.Textbox( label= "Enter a sentence", lines=1, value="Your name"), gr.File( label="Or upload a dataset"), gr.CheckboxGroup( ["emotion frequencies", "emotion distribution over time", "peaks", "topics"], label = "Select options") ], outputs="text") iface_sentence = gr.Interface( fn=inference_sentence, description = description_sentence, inputs = gr.Textbox( label="Enter a sentence", lines=1), outputs="text") iface2 = gr.Interface( fn=inference_dataset, description = description2, inputs=[ gr.File( label="Upload a dataset"), gr.CheckboxGroup( ["emotion frequencies", "emotion distribution over time", "peaks", "topics"], label = "Select options") ], #outputs=["text", "text", "text", "text", "text"]) outputs = [ #gr.Textbox(label="Output file"), "file", gr.Textbox(label="Emotion frequencies"), gr.Textbox(label="Emotion distribution over time"), gr.Textbox(label="Peaks"), gr.Textbox(label="Topics") ]) iface = gr.TabbedInterface([iface_sentence, iface2], ["Sentence", "Dataset"]) iface.launch()