Spaces:
Running
Running
Commit
·
ee4947a
1
Parent(s):
9b09577
Update app.py
Browse files
app.py
CHANGED
@@ -271,6 +271,9 @@ def topics(output_file, input_checks):
|
|
271 |
plot.update_layout(width=600, height=400)
|
272 |
return gr.Plot.update(value=plot, visible=True) # no next_button becomes available
|
273 |
|
|
|
|
|
|
|
274 |
with gr.Blocks() as demo:
|
275 |
with gr.Column(scale=1, min_width=50):
|
276 |
gr.Markdown("""
|
@@ -281,7 +284,7 @@ with gr.Blocks() as demo:
|
|
281 |
|
282 |
<div style="display: block;margin-left: auto;margin-right: auto;width: 60%;"><img alt="EmotioNL logo" src="https://users.ugent.be/~lundbruy/EmotioNL.png" width="100%"></div>
|
283 |
|
284 |
-
<div style="display: block;margin-left: auto;margin-right: auto;width: 75%;">This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses
|
285 |
""")
|
286 |
with gr.Tab("Sentence"):
|
287 |
gr.Markdown("""
|
|
|
271 |
plot.update_layout(width=600, height=400)
|
272 |
return gr.Plot.update(value=plot, visible=True) # no next_button becomes available
|
273 |
|
274 |
+
# This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.
|
275 |
+
|
276 |
+
|
277 |
with gr.Blocks() as demo:
|
278 |
with gr.Column(scale=1, min_width=50):
|
279 |
gr.Markdown("""
|
|
|
284 |
|
285 |
<div style="display: block;margin-left: auto;margin-right: auto;width: 60%;"><img alt="EmotioNL logo" src="https://users.ugent.be/~lundbruy/EmotioNL.png" width="100%"></div>
|
286 |
|
287 |
+
<div style="display: block;margin-left: auto;margin-right: auto;width: 75%;">This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses <a href="https://github.com/iPieter/RobBERT">RobBERT</a>, which was further fine-tuned on the <a href="https://lt3.ugent.be/resources/emotionl/">EmotioNL dataset</a>. The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: <i>anger</i>, <i>fear</i>, <i>joy</i>, <i>love</i>, <i>sadness</i> or <i>neutral</i>. The demo can be used either in <b>sentence mode</b>, which allows you to enter a sentence for which an emotion will be predicted; or in <b>dataset mode</b>, which allows you to upload a dataset or see the full functuonality of with example data.</div>
|
288 |
""")
|
289 |
with gr.Tab("Sentence"):
|
290 |
gr.Markdown("""
|