lunadebruyne commited on
Commit
ee4947a
·
1 Parent(s): 9b09577

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -271,6 +271,9 @@ def topics(output_file, input_checks):
271
  plot.update_layout(width=600, height=400)
272
  return gr.Plot.update(value=plot, visible=True) # no next_button becomes available
273
 
 
 
 
274
  with gr.Blocks() as demo:
275
  with gr.Column(scale=1, min_width=50):
276
  gr.Markdown("""
@@ -281,7 +284,7 @@ with gr.Blocks() as demo:
281
 
282
  <div style="display: block;margin-left: auto;margin-right: auto;width: 60%;"><img alt="EmotioNL logo" src="https://users.ugent.be/~lundbruy/EmotioNL.png" width="100%"></div>
283
 
284
- <div style="display: block;margin-left: auto;margin-right: auto;width: 75%;">This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.</div>
285
  """)
286
  with gr.Tab("Sentence"):
287
  gr.Markdown("""
 
271
  plot.update_layout(width=600, height=400)
272
  return gr.Plot.update(value=plot, visible=True) # no next_button becomes available
273
 
274
+ # This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.
275
+
276
+
277
  with gr.Blocks() as demo:
278
  with gr.Column(scale=1, min_width=50):
279
  gr.Markdown("""
 
284
 
285
  <div style="display: block;margin-left: auto;margin-right: auto;width: 60%;"><img alt="EmotioNL logo" src="https://users.ugent.be/~lundbruy/EmotioNL.png" width="100%"></div>
286
 
287
+ <div style="display: block;margin-left: auto;margin-right: auto;width: 75%;">This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses <a href="https://github.com/iPieter/RobBERT">RobBERT</a>, which was further fine-tuned on the <a href="https://lt3.ugent.be/resources/emotionl/">EmotioNL dataset</a>. The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: <i>anger</i>, <i>fear</i>, <i>joy</i>, <i>love</i>, <i>sadness</i> or <i>neutral</i>. The demo can be used either in <b>sentence mode</b>, which allows you to enter a sentence for which an emotion will be predicted; or in <b>dataset mode</b>, which allows you to upload a dataset or see the full functuonality of with example data.</div>
288
  """)
289
  with gr.Tab("Sentence"):
290
  gr.Markdown("""