Spaces:
Running
Running
Commit
·
bd33424
1
Parent(s):
b760f7b
Update app.py
Browse files
app.py
CHANGED
@@ -6,84 +6,24 @@ import pandas as pd
|
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
|
9 |
-
from transformers import TrainingArguments, Trainer
|
10 |
-
|
11 |
-
from datasets import load_dataset
|
12 |
|
13 |
|
14 |
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
|
15 |
-
|
16 |
|
17 |
inference_modelpath = "model/checkpoint-128"
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
|
31 |
-
|
32 |
-
|
33 |
-
# Function for encoding (tokenizing) data
|
34 |
-
def encode_data(data):
|
35 |
-
text = data["text"]
|
36 |
-
label = data["label"]
|
37 |
-
encoded_input = tokenizer(
|
38 |
-
text,
|
39 |
-
add_special_tokens=True,
|
40 |
-
max_length= model_config["max_length"],
|
41 |
-
padding= "max_length",
|
42 |
-
return_overflowing_tokens=True,
|
43 |
-
truncation=True
|
44 |
-
)
|
45 |
-
encoded_input["labels"] = label
|
46 |
-
return encoded_input
|
47 |
-
|
48 |
-
|
49 |
-
# Test arguments for Trainer
|
50 |
-
test_args = TrainingArguments(
|
51 |
-
output_dir = output_dir,
|
52 |
-
do_train = False,
|
53 |
-
do_predict = True,
|
54 |
-
per_device_eval_batch_size = 64,
|
55 |
-
dataloader_drop_last = False
|
56 |
-
)
|
57 |
-
trainer = Trainer(
|
58 |
-
model = model,
|
59 |
-
args = test_args)
|
60 |
-
|
61 |
-
|
62 |
-
def inference_dataset(file_object):
|
63 |
-
input_file = file_object
|
64 |
-
data_paths = {"train": input_file, "inference": input_file}
|
65 |
-
dataset = load_dataset('csv', skiprows=1, data_files=data_paths, column_names = ['id', 'text', 'label'], delimiter='\t')
|
66 |
-
encoded_dataset = dataset.map(encode_data, batched=True)
|
67 |
-
encoded_dataset.set_format("torch")
|
68 |
-
encoded_dataset["inference"] = encoded_dataset["inference"].remove_columns("label")
|
69 |
-
# Run trainer in prediction mode
|
70 |
-
prediction_output = trainer.predict(encoded_dataset["inference"])
|
71 |
-
predictions = prediction_output[0]
|
72 |
-
ids = dataset["inference"]["id"]
|
73 |
-
texts = dataset["inference"]["text"]
|
74 |
-
preds = np.argmax(predictions, axis=1)
|
75 |
-
preds = [model.config.id2label[pred] for pred in preds]
|
76 |
-
predictions_content = list(zip(ids, texts, preds))
|
77 |
-
# write predictions to file
|
78 |
-
output = "output.txt"
|
79 |
-
f = open(output, 'w')
|
80 |
-
f.write("id\ttext\tprediction\n")
|
81 |
-
for line in predictions_content:
|
82 |
-
f.write(str(line[0]) + '\t' + str(line[1]) + '\t' + str(line[2]) + '\n')
|
83 |
-
f.close()
|
84 |
-
return output
|
85 |
-
"""
|
86 |
-
|
87 |
def inference_dataset(file_object, option_list):
|
88 |
tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
|
89 |
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
|
@@ -119,68 +59,6 @@ def inference_dataset(file_object, option_list):
|
|
119 |
output5 = "This option was selected."
|
120 |
return [output1, output2, output3, output4, output5]
|
121 |
|
122 |
-
def what_happened(text, file_object, option_list):
|
123 |
-
if file_object:
|
124 |
-
output = "You uploaded a file."
|
125 |
-
#if len(option_list) > 0:
|
126 |
-
#output = output + "\nYou selected these options:\n- " + "\n- ".join(option_list)
|
127 |
-
else:
|
128 |
-
output = "Normally, this demo should analyse the emotions in this text:\n" + text
|
129 |
-
if len(option_list) > 0:
|
130 |
-
output = output + "\nYou can only select options when uploading a dataset."
|
131 |
-
return output
|
132 |
-
|
133 |
-
def what_happened1(text):
|
134 |
-
output = "Normally, this demo should analyse the emotions in this text:\n" + text
|
135 |
-
return output
|
136 |
-
|
137 |
-
def what_happened2(file_object, option_list):
|
138 |
-
#input_file = open(file_object.name, 'r')
|
139 |
-
#lines = input_file.read()
|
140 |
-
#input_file.close()
|
141 |
-
#output_file = open('output.txt', 'w')
|
142 |
-
#output_file.write(lines)
|
143 |
-
#output_file.close()
|
144 |
-
#output1 = 'output.txt'
|
145 |
-
output1 = inference_dataset(file_object.name)
|
146 |
-
output2 = output3 = output4 = output5 = "This option was not selected."
|
147 |
-
if "emotion frequencies" in option_list:
|
148 |
-
output2 = "This option was selected."
|
149 |
-
if "emotion distribution over time" in option_list:
|
150 |
-
output3 = "This option was selected."
|
151 |
-
if "peaks" in option_list:
|
152 |
-
output4 = "This option was selected."
|
153 |
-
if "topics" in option_list:
|
154 |
-
output5 = "This option was selected."
|
155 |
-
return [output1, output2, output3, output4, output5]
|
156 |
-
|
157 |
-
def inference_sentence(text):
|
158 |
-
tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
|
159 |
-
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
|
160 |
-
for text in tqdm([text]):
|
161 |
-
inputs = tokenizer(text, return_tensors="pt")
|
162 |
-
with torch.no_grad(): # run model
|
163 |
-
logits = model(**inputs).logits
|
164 |
-
predicted_class_id = logits.argmax().item()
|
165 |
-
output = model.config.id2label[predicted_class_id]
|
166 |
-
return output
|
167 |
-
|
168 |
-
|
169 |
-
iface0 = gr.Interface(
|
170 |
-
fn=what_happened,
|
171 |
-
inputs=[
|
172 |
-
gr.Textbox(
|
173 |
-
label= "Enter a sentence",
|
174 |
-
lines=1,
|
175 |
-
value="Your name"),
|
176 |
-
gr.File(
|
177 |
-
label="Or upload a dataset"),
|
178 |
-
gr.CheckboxGroup(
|
179 |
-
["emotion frequencies", "emotion distribution over time", "peaks", "topics"],
|
180 |
-
label = "Select options")
|
181 |
-
],
|
182 |
-
outputs="text")
|
183 |
-
|
184 |
iface_sentence = gr.Interface(
|
185 |
fn=inference_sentence,
|
186 |
description = description_sentence,
|
@@ -189,10 +67,9 @@ iface_sentence = gr.Interface(
|
|
189 |
lines=1),
|
190 |
outputs="text")
|
191 |
|
192 |
-
|
193 |
-
#fn=what_happened2,
|
194 |
fn = inference_dataset,
|
195 |
-
description =
|
196 |
inputs=[
|
197 |
gr.File(
|
198 |
label="Upload a dataset"),
|
@@ -210,6 +87,6 @@ iface2 = gr.Interface(
|
|
210 |
gr.Textbox(label="Topics")
|
211 |
])
|
212 |
|
213 |
-
iface = gr.TabbedInterface([iface_sentence,
|
214 |
|
215 |
iface.queue().launch()
|
|
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
|
12 |
+
description_dataset = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
|
13 |
|
14 |
inference_modelpath = "model/checkpoint-128"
|
15 |
|
16 |
+
def inference_sentence(text):
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
|
19 |
+
for text in tqdm([text]):
|
20 |
+
inputs = tokenizer(text, return_tensors="pt")
|
21 |
+
with torch.no_grad(): # run model
|
22 |
+
logits = model(**inputs).logits
|
23 |
+
predicted_class_id = logits.argmax().item()
|
24 |
+
output = model.config.id2label[predicted_class_id]
|
25 |
+
return output
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def inference_dataset(file_object, option_list):
|
28 |
tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
|
29 |
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
|
|
|
59 |
output5 = "This option was selected."
|
60 |
return [output1, output2, output3, output4, output5]
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
iface_sentence = gr.Interface(
|
63 |
fn=inference_sentence,
|
64 |
description = description_sentence,
|
|
|
67 |
lines=1),
|
68 |
outputs="text")
|
69 |
|
70 |
+
iface_dataset = gr.Interface(
|
|
|
71 |
fn = inference_dataset,
|
72 |
+
description = description_dataset,
|
73 |
inputs=[
|
74 |
gr.File(
|
75 |
label="Upload a dataset"),
|
|
|
87 |
gr.Textbox(label="Topics")
|
88 |
])
|
89 |
|
90 |
+
iface = gr.TabbedInterface([iface_sentence, iface_dataset], ["Sentence", "Dataset"])
|
91 |
|
92 |
iface.queue().launch()
|