lunadebruyne commited on
Commit
a657537
·
1 Parent(s): 65b8d37

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -274,9 +274,12 @@ def topics(output_file, input_checks):
274
  with gr.Blocks() as demo:
275
  with gr.Tab("Sentence"):
276
  gr.Markdown("""
277
- # Demo EmotioNL
278
- This demo allows you to analyse the emotion in a Dutch sentence.
279
- """)
 
 
 
280
  with gr.Row():
281
  with gr.Column():
282
  input = gr.Textbox(
 
274
  with gr.Blocks() as demo:
275
  with gr.Tab("Sentence"):
276
  gr.Markdown("""
277
+ <div style="text-align: center"><h1>EmotioNL: A framework for Dutch emotion detection</h1></div>
278
+
279
+ <div style="display: block;margin-left: auto;margin-right: auto;width: 60%;"><img alt="EmotioNL logo" src="https://users.ugent.be/~lundbruy/EmotioNL.png" width="100%"></div>
280
+
281
+ This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.
282
+ """)
283
  with gr.Row():
284
  with gr.Column():
285
  input = gr.Textbox(