lunadebruyne commited on
Commit
8bb7a63
·
1 Parent(s): fc18efa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -371,10 +371,10 @@ def topics(output_file, input_checks):
371
 
372
  with gr.Blocks() as demo:
373
  with gr.Row():
374
- with gr.Column(scale=1):
375
  gr.Markdown("""
376
  """)
377
- with gr.Column(scale=6, min_width=600):
378
  gr.Markdown("""
379
  <div style="text-align: center"><h1>EmotioNL: A framework for Dutch emotion detection</h1></div>
380
 
@@ -382,14 +382,14 @@ with gr.Blocks() as demo:
382
 
383
  This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.
384
  """)
385
- with gr.Column(scale=1):
386
  gr.Markdown("""
387
  """)
388
  with gr.Row():
389
- with gr.Column(scale=1):
390
  gr.Markdown("""
391
  """)
392
- with gr.Column(scale=6, min_width=600):
393
  with gr.Tab("Sentence"):
394
  gr.Markdown("""
395
  """)
@@ -469,21 +469,21 @@ with gr.Blocks() as demo:
469
  next_button_topics.click(fn=topics, inputs=[output_file,input_checks], outputs=output_topics)
470
  send_btn.click(fn=unavailable, inputs=[input_file,input_checks], outputs=[output_markdown,message])
471
  demo_btn.click(fn=showcase, inputs=[input_file], outputs=[output_markdown,message,output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])
472
- with gr.Column(scale=1):
473
  gr.Markdown("""
474
  """)
475
 
476
  with gr.Row():
477
- with gr.Column(scale=1):
478
  gr.Markdown("""
479
  """)
480
- with gr.Column(scale=6, min_width=600):
481
  gr.Markdown("""
482
  <font size="2">Both this demo and the dataset have been created by [LT3](https://lt3.ugent.be/), the Language and Translation Technology Team of Ghent University. The EmotioNL project has been carried out with support from the Research Foundation – Flanders (FWO). For any questions, please contact [email protected].</font>
483
 
484
  <div style="display: flex"><img style="margin-right: 1em" alt="LT3 logo" src="https://lt3.ugent.be/static/images/logo_v2_single.png" width="136" height="58"> <img style="margin-right: 1em" alt="FWO logo" src="https://www.fwo.be/images/logo_desktop.png" height="58"></div>
485
  """)
486
- with gr.Column(scale=1):
487
  gr.Markdown("""
488
  """)
489
  demo.launch()
 
371
 
372
  with gr.Blocks() as demo:
373
  with gr.Row():
374
+ with gr.Column(scale=1, min_width=50):
375
  gr.Markdown("""
376
  """)
377
+ with gr.Column(scale=6):
378
  gr.Markdown("""
379
  <div style="text-align: center"><h1>EmotioNL: A framework for Dutch emotion detection</h1></div>
380
 
 
382
 
383
  This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.
384
  """)
385
+ with gr.Column(scale=1, min_width=50):
386
  gr.Markdown("""
387
  """)
388
  with gr.Row():
389
+ with gr.Column(scale=1, min_width=50):
390
  gr.Markdown("""
391
  """)
392
+ with gr.Column(scale=6):
393
  with gr.Tab("Sentence"):
394
  gr.Markdown("""
395
  """)
 
469
  next_button_topics.click(fn=topics, inputs=[output_file,input_checks], outputs=output_topics)
470
  send_btn.click(fn=unavailable, inputs=[input_file,input_checks], outputs=[output_markdown,message])
471
  demo_btn.click(fn=showcase, inputs=[input_file], outputs=[output_markdown,message,output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])
472
+ with gr.Column(scale=1, min_width=50):
473
  gr.Markdown("""
474
  """)
475
 
476
  with gr.Row():
477
+ with gr.Column(scale=1, min_width=50):
478
  gr.Markdown("""
479
  """)
480
+ with gr.Column(scale=6):
481
  gr.Markdown("""
482
  <font size="2">Both this demo and the dataset have been created by [LT3](https://lt3.ugent.be/), the Language and Translation Technology Team of Ghent University. The EmotioNL project has been carried out with support from the Research Foundation – Flanders (FWO). For any questions, please contact [email protected].</font>
483
 
484
  <div style="display: flex"><img style="margin-right: 1em" alt="LT3 logo" src="https://lt3.ugent.be/static/images/logo_v2_single.png" width="136" height="58"> <img style="margin-right: 1em" alt="FWO logo" src="https://www.fwo.be/images/logo_desktop.png" height="58"></div>
485
  """)
486
+ with gr.Column(scale=1, min_width=50):
487
  gr.Markdown("""
488
  """)
489
  demo.launch()