Spaces:
Running
Running
File size: 13,356 Bytes
18810b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import torch
import numpy as np
import pickle
import pandas as pd
from tqdm import tqdm
import altair as alt
import matplotlib.pyplot as plt
from datetime import date, timedelta
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
def inference_sentence(text):
tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
for text in tqdm([text]):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad(): # run model
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
output = model.config.id2label[predicted_class_id]
return "Predicted emotion:\n" + output
def freq(file_output):
f = open(file_output, 'r')
data = f.read().split("\n")
f.close()
data = [line.split(",") for line in data[1:-1]]
freq_dict = {}
for line in data:
if line[1] not in freq_dict.keys():
freq_dict[line[1]] = 1
else:
freq_dict[line[1]] += 1
simple = pd.DataFrame({
'Emotion category': ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness'],
'Frequency': [freq_dict['0'], freq_dict['1'], freq_dict['2'], freq_dict['3'], freq_dict['4'], freq_dict['5']]})
domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']
n = max(simple['Frequency'])
plot = alt.Chart(simple).mark_bar().encode(
x=alt.X("Emotion category", sort=['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']),
y=alt.Y("Frequency", axis=alt.Axis(grid=False), scale=alt.Scale(domain=[0, (n + 9) // 10 * 10])),
color=alt.Color("Emotion category", scale=alt.Scale(domain=domain, range=range_), legend=None),
tooltip=['Emotion category', 'Frequency']).properties(
width=600).configure_axis(
grid=False).interactive()
return plot
def dist(file_output):
f = open(file_output, 'r')
data = f.read().split("\n")
f.close()
data = [line.split(",") for line in data[1:-1]]
freq_dict = {}
mapping_dict = {'0': 'neutral', '1': 'anger', '2': 'fear', '3': 'joy', '4': 'love', '5': 'sadness'}
for line in data:
dat = str(date(int(line[0][:4]), int(line[0][4:6]), int(line[0][6:8])))
if dat not in freq_dict.keys():
freq_dict[dat] = {}
if mapping_dict[line[1]] not in freq_dict[dat].keys():
freq_dict[dat][mapping_dict[line[1]]] = 1
else:
freq_dict[dat][mapping_dict[line[1]]] += 1
else:
if mapping_dict[line[1]] not in freq_dict[dat].keys():
freq_dict[dat][mapping_dict[line[1]]] = 1
else:
freq_dict[dat][mapping_dict[line[1]]] += 1
start_date = date(int(data[0][0][:4]), int(data[0][0][4:6]), int(data[0][0][6:8]))
end_date = date(int(data[-1][0][:4]), int(data[-1][0][4:6]), int(data[-1][0][6:8]))
delta = end_date - start_date # returns timedelta
date_range = [str(start_date + timedelta(days=i)) for i in range(delta.days + 1)]
dates = [dat for dat in date_range for i in range(6)]
frequency = [freq_dict[dat][emotion] if (dat in freq_dict.keys() and emotion in freq_dict[dat].keys()) else 0 for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
categories = [emotion for dat in date_range for emotion in ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']]
data = pd.DataFrame({
'Date': dates,
'Frequency': frequency,
'Emotion category': categories})
domain = ['neutral', 'anger', 'fear', 'joy', 'love', 'sadness']
range_ = ['#999999', '#b22222', '#663399', '#ffcc00', '#db7093', '#6495ed']
n = max(data['Frequency'])
highlight = alt.selection(
type='single', on='mouseover', fields=["Emotion category"], nearest=True)
base = alt.Chart(data).encode(
x ="Date:T",
y=alt.Y("Frequency", scale=alt.Scale(domain=[0, (n + 9) // 10 * 10])),
color=alt.Color("Emotion category", scale=alt.Scale(domain=domain, range=range_), legend=alt.Legend(orient='bottom', direction='horizontal')))
points = base.mark_circle().encode(
opacity=alt.value(0),
tooltip=[
alt.Tooltip('Emotion category', title='Emotion category'),
alt.Tooltip('Date:T', title='Date'),
alt.Tooltip('Frequency', title='Frequency')
]).add_selection(highlight)
lines = base.mark_line().encode(
size=alt.condition(~highlight, alt.value(1), alt.value(3)))
plot = (points + lines).properties(width=600, height=350).interactive()
return plot
def showcase(dataset):
# predictions file
if dataset == "The Voice of Holland":
file_output = "output/predictions_tvoh.txt"
elif dataset == "Floodings":
file_output = "output/predictions_floodings.txt"
elif dataset == "COVID-19":
file_output = "output/predictions_covid.txt"
elif dataset == "Childcare Benefits":
file_output = "output/predictions_toeslagen.txt"
# freq bar plot
freq_output = freq(file_output)
# dist plot
dist_output = dist(file_output)
# peaks
if dataset == "The Voice of Holland":
peaks_output = pickle.load(open('output/peaks_tvoh.p', 'rb'))
elif dataset == "Floodings":
peaks_output = pickle.load(open('output/peaks_floodings.p', 'rb'))
elif dataset == "COVID-19":
peaks_output = pickle.load(open('output/peaks_covid.p', 'rb'))
elif dataset == "Childcare Benefits":
peaks_output = pickle.load(open('output/peaks_toeslagen.p', 'rb'))
# topics
if dataset == "The Voice of Holland":
topics_output = pickle.load(open('output/topics_tvoh.p', 'rb'))
elif dataset == "Floodings":
topics_output = pickle.load(open('output/topics_floodings.p', 'rb'))
elif dataset == "COVID-19":
topics_output = pickle.load(open('output/topics_covid.p', 'rb'))
elif dataset == "Childcare Benefits":
topics_output = pickle.load(open('output/topics_toeslagen.p', 'rb'))
return gr.update(visible=True), gr.update(value=file_output, visible=True), gr.update(value=freq_output,visible=True), gr.update(value=dist_output,visible=True), gr.update(value=peaks_output,visible=True), gr.update(value=topics_output,visible=True)
inference_modelpath = "model/checkpoint-128"
with gr.Blocks() as demo:
with gr.Column(scale=1, min_width=50):
gr.Markdown("""
""")
with gr.Column(scale=5):
gr.Markdown("""
<div style="text-align: center"><h1>EmotioNL: A framework for Dutch emotion detection</h1></div>
<div style="display: block;margin-left: auto;margin-right: auto;width: 60%;"><img alt="EmotioNL logo" src="https://users.ugent.be/~lundbruy/EmotioNL.png" width="100%"></div>
<div style="display: block;margin-left: auto;margin-right: auto;width: 75%;">This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses <a href="https://github.com/iPieter/RobBERT">RobBERT</a>, which was further fine-tuned on the <a href="https://lt3.ugent.be/resources/emotionl/">EmotioNL dataset</a>. The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: <i>anger</i>, <i>fear</i>, <i>joy</i>, <i>love</i>, <i>sadness</i> or <i>neutral</i>. The demo can be used either in <b>sentence mode</b>, which allows you to enter a sentence for which an emotion will be predicted; or in <b>dataset mode</b>, which allows you to upload a dataset or see the full functionality with example data.</div>
""")
with gr.Tab("Sentence"):
gr.Markdown("""
""")
with gr.Row():
with gr.Column():
input = gr.Textbox(
label="Enter a sentence",
value="Jaaah! Volgende vakantie Barcelona en na het zomerseizoen naar de Algarve",
lines=1)
send_btn = gr.Button("Send")
output = gr.Textbox()
send_btn.click(fn=inference_sentence, inputs=input, outputs=output)
with gr.Tab("Showcase"):
with gr.Row():
with gr.Column():
gr.Markdown("""
**<font size="4">Run the demo on the data of a specific crisis case</font>**
Select the desired dataset and click the button to run the demo.
""")
with gr.Column():
gr.Markdown("""
""")
with gr.Column():
gr.Markdown("""
**<font size="4">Output</font>**
After having clicked on the run button, scroll down to see the output (running may take a while):
""")
with gr.Row():
with gr.Column():
# demo1_btn = gr.Button("The Voice of Holland", variant="primary")
# demo2_btn = gr.Button("Floodings", variant="primary")
# demo3_btn = gr.Button("COVID-19", variant="primary")
# demo4_btn = gr.Button("Childcare Benefits", variant="primary")
dataset = gr.Dropdown(["The Voice of Holland", "Floodings", "COVID-19", "Childcare Benefits"], show_label=False)
run_btn = gr.Button("Run", variant="primary")
with gr.Column():
gr.Markdown("""
**The Voice of Holland:** 18,502 tweets about a scandal about sexual misconduct in the Dutch reality TV singing competition 'The Voice of Holland'.
**Floodings:** 9,923 tweets about the floodings that affected Belgium and the Netherlands in the Summer of 2021.
**COVID-19:** 609,206 tweets about the COVID-19 pandemic, posted in the first eight months of the crisis.
**Chilcare Benefits:** 66,961 tweets about the political scandal concerning false allegations of fraud regarding childcare allowance in the Netherlands.
""")
with gr.Column():
gr.Markdown("""
**Predictions:** file with the predicted emotion label for each instance in the dataset.
**Emotion frequencies:** bar plot with the prediction frequencies of each emotion category (anger, fear, joy, love, sadness or neutral).
**Emotion distribution over time:** line plot that visualises the frequency of predicted emotions over time for each emotion category.
**Peaks:** step graph that only shows the significant fluctuations (upwards and downwards) in emotion frequencies over time.
**Topics:** a bar plot that shows the emotion distribution for different topics in the dataset. Topics are extracted using [BERTopic](https://maartengr.github.io/BERTopic/index.html).
""")
with gr.Row():
gr.Markdown("""
___
""")
with gr.Row():
with gr.Column():
output_markdown = gr.Markdown("""
**<font size="4">Output</font>**
""", visible=False)
message = gr.Textbox(label="Message", visible=False)
output_file = gr.File(label="Predictions", visible=False)
output_plot = gr.Plot(show_label=False, visible=False).style(container=True)
output_dist = gr.Plot(show_label=False, visible=False)
output_peaks = gr.Plot(show_label=False, visible=False)
output_topics = gr.Plot(show_label=False, visible=False)
run_btn.click(fn=showcase, inputs=[dataset], outputs=[output_markdown, output_file, output_plot, output_dist, output_peaks, output_topics])
with gr.Row():
with gr.Column():
gr.Markdown("""
<font size="2">Both this demo and the dataset have been created by [LT3](https://lt3.ugent.be/), the Language and Translation Technology Team of Ghent University. The EmotioNL project has been carried out with support from the Research Foundation – Flanders (FWO). For any questions, please contact [email protected].</font>
<div style="display: grid;grid-template-columns:150px auto;"> <img style="margin-right: 1em" alt="LT3 logo" src="https://lt3.ugent.be/static/images/logo_v2_single.png" width="136" height="58"> <img style="margin-right: 1em" alt="FWO logo" src="https://www.fwo.be/images/logo_desktop.png" height="58"></div>
""")
with gr.Column(scale=1, min_width=50):
gr.Markdown("""
""")
demo.launch() |