Spaces:
Running
on
Zero
Running
on
Zero
Antoine Chaffin
commited on
Commit
·
349b5c2
1
Parent(s):
d7e0b8c
Initial commit
Browse files- app.py +106 -0
- model.py +118 -0
- requirements.txt +9 -0
- voyager_index.py +221 -0
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uuid
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from qwen_vl_utils import process_vision_info
|
6 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
7 |
+
from voyager_index import Voyager
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
device = "cpu"
|
11 |
+
|
12 |
+
# Initialize the model and processor
|
13 |
+
model = (
|
14 |
+
Qwen2VLForConditionalGeneration.from_pretrained(
|
15 |
+
"Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16
|
16 |
+
)
|
17 |
+
.to(device)
|
18 |
+
.eval()
|
19 |
+
)
|
20 |
+
|
21 |
+
processor = AutoProcessor.from_pretrained(
|
22 |
+
"Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def create_index(session_id):
|
27 |
+
return Voyager(embedding_size=1536, override=True, index_name=f"{session_id}")
|
28 |
+
|
29 |
+
|
30 |
+
def add_to_index(files, index):
|
31 |
+
index.add_documents([file.name for file in files], batch_size=1)
|
32 |
+
return f"Added {len(files)} files to the index."
|
33 |
+
|
34 |
+
|
35 |
+
def query_index(query, index):
|
36 |
+
res = index(query, k=1)
|
37 |
+
retrieved_image = res["documents"][0][0]["image"]
|
38 |
+
|
39 |
+
messages = [
|
40 |
+
{
|
41 |
+
"role": "user",
|
42 |
+
"content": [
|
43 |
+
{
|
44 |
+
"type": "image",
|
45 |
+
"image": retrieved_image,
|
46 |
+
},
|
47 |
+
{"type": "text", "text": query},
|
48 |
+
],
|
49 |
+
}
|
50 |
+
]
|
51 |
+
text = processor.apply_chat_template(
|
52 |
+
messages, tokenize=False, add_generation_prompt=True
|
53 |
+
)
|
54 |
+
|
55 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
56 |
+
inputs = processor(
|
57 |
+
text=[text],
|
58 |
+
images=image_inputs,
|
59 |
+
videos=video_inputs,
|
60 |
+
padding=True,
|
61 |
+
return_tensors="pt",
|
62 |
+
)
|
63 |
+
inputs = inputs.to(device)
|
64 |
+
generated_ids = model.generate(**inputs, max_new_tokens=200)
|
65 |
+
generated_ids_trimmed = [
|
66 |
+
out_ids[len(in_ids) :]
|
67 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
68 |
+
]
|
69 |
+
output_text = processor.batch_decode(
|
70 |
+
generated_ids_trimmed,
|
71 |
+
skip_special_tokens=True,
|
72 |
+
clean_up_tokenization_spaces=False,
|
73 |
+
)
|
74 |
+
|
75 |
+
return output_text[0], retrieved_image
|
76 |
+
|
77 |
+
|
78 |
+
# Define the Gradio interface
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
session_id = gr.State(lambda: str(uuid.uuid4()))
|
81 |
+
index = gr.State(lambda: create_index(session_id.value))
|
82 |
+
|
83 |
+
gr.Markdown("# Full vision pipeline demo")
|
84 |
+
|
85 |
+
with gr.Tab("Add to Index"):
|
86 |
+
file_input = gr.File(file_count="multiple", label="Upload Files")
|
87 |
+
add_button = gr.Button("Add to Index")
|
88 |
+
add_output = gr.Textbox(label="Result")
|
89 |
+
|
90 |
+
add_button.click(add_to_index, inputs=[file_input, index], outputs=add_output)
|
91 |
+
|
92 |
+
with gr.Tab("Query Index"):
|
93 |
+
query_input = gr.Textbox(label="Enter your query")
|
94 |
+
query_button = gr.Button("Submit Query")
|
95 |
+
with gr.Row():
|
96 |
+
query_output = gr.Textbox(label="Answer")
|
97 |
+
image_output = gr.Image(label="Retrieved Image")
|
98 |
+
|
99 |
+
query_button.click(
|
100 |
+
query_index,
|
101 |
+
inputs=[query_input, index],
|
102 |
+
outputs=[query_output, image_output],
|
103 |
+
)
|
104 |
+
|
105 |
+
# Launch the interface
|
106 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
5 |
+
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
# device = "cpu"
|
8 |
+
|
9 |
+
min_pixels = 1 * 28 * 28
|
10 |
+
max_pixels = 256 * 28 * 28 # 2560 * 28 * 28
|
11 |
+
|
12 |
+
|
13 |
+
processor = AutoProcessor.from_pretrained(
|
14 |
+
"MrLight/dse-qwen2-2b-mrl-v1", min_pixels=min_pixels, max_pixels=max_pixels
|
15 |
+
)
|
16 |
+
model = (
|
17 |
+
Qwen2VLForConditionalGeneration.from_pretrained(
|
18 |
+
"MrLight/dse-qwen2-2b-mrl-v1",
|
19 |
+
# attn_implementation="eager",
|
20 |
+
attn_implementation="flash_attention_2"
|
21 |
+
if device == "cuda"
|
22 |
+
else "eager", # flash_attn is required but is a pain to install on spaces
|
23 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
|
24 |
+
)
|
25 |
+
.to(device)
|
26 |
+
.eval()
|
27 |
+
)
|
28 |
+
processor.tokenizer.padding_side = "left"
|
29 |
+
model.padding_side = "left"
|
30 |
+
|
31 |
+
|
32 |
+
def get_embedding(last_hidden_state: torch.Tensor, dimension: int):
|
33 |
+
reps = last_hidden_state[:, -1]
|
34 |
+
reps = torch.nn.functional.normalize(reps[:, :dimension], p=2, dim=-1)
|
35 |
+
return reps.to(torch.float32).cpu().numpy()
|
36 |
+
|
37 |
+
|
38 |
+
def encode_queries(queries: list):
|
39 |
+
if isinstance(queries, str):
|
40 |
+
queries = [queries]
|
41 |
+
query_messages = []
|
42 |
+
for query in queries:
|
43 |
+
message = [
|
44 |
+
{
|
45 |
+
"role": "user",
|
46 |
+
"content": [
|
47 |
+
{
|
48 |
+
"type": "image",
|
49 |
+
"image": Image.new("RGB", (28, 28)),
|
50 |
+
"resized_height": 1,
|
51 |
+
"resized_width": 1,
|
52 |
+
}, # need a dummy image here for an easier process.
|
53 |
+
{"type": "text", "text": f"Query: {query}"},
|
54 |
+
],
|
55 |
+
}
|
56 |
+
]
|
57 |
+
query_messages.append(message)
|
58 |
+
query_texts = [
|
59 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
|
60 |
+
+ "<|endoftext|>"
|
61 |
+
for msg in query_messages
|
62 |
+
]
|
63 |
+
query_image_inputs, query_video_inputs = process_vision_info(query_messages)
|
64 |
+
query_inputs = processor(
|
65 |
+
text=query_texts,
|
66 |
+
images=query_image_inputs,
|
67 |
+
videos=query_video_inputs,
|
68 |
+
padding="longest",
|
69 |
+
return_tensors="pt",
|
70 |
+
).to(device)
|
71 |
+
query_inputs = model.prepare_inputs_for_generation(**query_inputs, use_cache=False)
|
72 |
+
with torch.no_grad():
|
73 |
+
output = model(**query_inputs, return_dict=True, output_hidden_states=True)
|
74 |
+
query_embeddings = get_embedding(
|
75 |
+
output.hidden_states[-1], 1536
|
76 |
+
) # adjust dimensionality for efficiency trade-off, e.g. 512
|
77 |
+
return query_embeddings
|
78 |
+
|
79 |
+
|
80 |
+
def encode_images(images: list):
|
81 |
+
if isinstance(images, Image.Image):
|
82 |
+
images = [images]
|
83 |
+
doc_messages = []
|
84 |
+
for image in images:
|
85 |
+
message = [
|
86 |
+
{
|
87 |
+
"role": "user",
|
88 |
+
"content": [
|
89 |
+
{
|
90 |
+
"type": "image",
|
91 |
+
"image": image,
|
92 |
+
}, #'resized_height':680 , 'resized_width':680} # adjust the image size for efficiency trade-off
|
93 |
+
{"type": "text", "text": "What is shown in this image?"},
|
94 |
+
],
|
95 |
+
}
|
96 |
+
]
|
97 |
+
doc_messages.append(message)
|
98 |
+
doc_texts = [
|
99 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
|
100 |
+
+ "<|endoftext|>"
|
101 |
+
for msg in doc_messages
|
102 |
+
]
|
103 |
+
doc_image_inputs, doc_video_inputs = process_vision_info(doc_messages)
|
104 |
+
doc_inputs = processor(
|
105 |
+
text=doc_texts,
|
106 |
+
images=doc_image_inputs,
|
107 |
+
videos=doc_video_inputs,
|
108 |
+
padding="longest",
|
109 |
+
return_tensors="pt",
|
110 |
+
).to(device)
|
111 |
+
doc_inputs = model.prepare_inputs_for_generation(**doc_inputs, use_cache=False)
|
112 |
+
output = model(**doc_inputs, return_dict=True, output_hidden_states=True)
|
113 |
+
with torch.no_grad():
|
114 |
+
output = model(**doc_inputs, return_dict=True, output_hidden_states=True)
|
115 |
+
doc_embeddings = get_embedding(
|
116 |
+
output.hidden_states[-1], 1536
|
117 |
+
) # adjust dimensionality for efficiency trade-off e.g. 512
|
118 |
+
return doc_embeddings
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
git+https://github.com/huggingface/transformers.git@refs/pull/33654/head#egg=transformers #git+https://github.com/huggingface/transformers #transformers
|
4 |
+
qwen-vl-utils
|
5 |
+
gradio
|
6 |
+
pypdfium2
|
7 |
+
# flash_attn # https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.9.post1/flash_attn-2.5.9.post1+cu118torch1.12cxx11abiFALSE-cp310-cp310-linux_x86_64.whl #flash_attn
|
8 |
+
sqlitedict
|
9 |
+
voyager
|
voyager_index.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pypdfium2 as pdfium
|
5 |
+
import torch
|
6 |
+
import tqdm
|
7 |
+
from model import encode_images, encode_queries
|
8 |
+
from PIL import Image
|
9 |
+
from sqlitedict import SqliteDict
|
10 |
+
from voyager import Index, Space
|
11 |
+
|
12 |
+
|
13 |
+
def iter_batch(
|
14 |
+
X: list[str], batch_size: int, tqdm_bar: bool = True, desc: str = ""
|
15 |
+
) -> list:
|
16 |
+
"""Iterate over a list of elements by batch."""
|
17 |
+
batchs = [X[pos : pos + batch_size] for pos in range(0, len(X), batch_size)]
|
18 |
+
|
19 |
+
if tqdm_bar:
|
20 |
+
for batch in tqdm.tqdm(
|
21 |
+
iterable=batchs,
|
22 |
+
position=0,
|
23 |
+
total=1 + len(X) // batch_size,
|
24 |
+
desc=desc,
|
25 |
+
):
|
26 |
+
yield batch
|
27 |
+
else:
|
28 |
+
yield from batchs
|
29 |
+
|
30 |
+
|
31 |
+
class Voyager:
|
32 |
+
"""Voyager index. The Voyager index is a fast and efficient index for approximate nearest neighbor search.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
name
|
37 |
+
The name of the collection.
|
38 |
+
override
|
39 |
+
Whether to override the collection if it already exists.
|
40 |
+
embedding_size
|
41 |
+
The number of dimensions of the embeddings.
|
42 |
+
M
|
43 |
+
The number of subquantizers.
|
44 |
+
ef_construction
|
45 |
+
The number of candidates to evaluate during the construction of the index.
|
46 |
+
ef_search
|
47 |
+
The number of candidates to evaluate during the search.
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
index_folder: str = "indexes",
|
53 |
+
index_name: str = "base_collection",
|
54 |
+
override: bool = False,
|
55 |
+
embedding_size: int = 128,
|
56 |
+
M: int = 64,
|
57 |
+
ef_construction: int = 200,
|
58 |
+
ef_search: int = 200,
|
59 |
+
) -> None:
|
60 |
+
self.ef_search = ef_search
|
61 |
+
|
62 |
+
if not os.path.exists(path=index_folder):
|
63 |
+
os.makedirs(name=index_folder)
|
64 |
+
|
65 |
+
self.index_path = os.path.join(index_folder, f"{index_name}.voyager")
|
66 |
+
self.page_ids_to_data_path = os.path.join(
|
67 |
+
index_folder, f"{index_name}_page_ids_to_data.sqlite"
|
68 |
+
)
|
69 |
+
|
70 |
+
self.index = self._create_collection(
|
71 |
+
index_path=self.index_path,
|
72 |
+
embedding_size=embedding_size,
|
73 |
+
M=M,
|
74 |
+
ef_constructions=ef_construction,
|
75 |
+
override=override,
|
76 |
+
)
|
77 |
+
|
78 |
+
def _load_page_ids_to_data(self) -> SqliteDict:
|
79 |
+
"""Load the SQLite database that maps document IDs to images."""
|
80 |
+
return SqliteDict(self.page_ids_to_data_path, outer_stack=False)
|
81 |
+
|
82 |
+
def _create_collection(
|
83 |
+
self,
|
84 |
+
index_path: str,
|
85 |
+
embedding_size: int,
|
86 |
+
M: int,
|
87 |
+
ef_constructions: int,
|
88 |
+
override: bool,
|
89 |
+
) -> None:
|
90 |
+
"""Create a new Voyager collection.
|
91 |
+
|
92 |
+
Parameters
|
93 |
+
----------
|
94 |
+
index_path
|
95 |
+
The path to the index.
|
96 |
+
embedding_size
|
97 |
+
The size of the embeddings.
|
98 |
+
M
|
99 |
+
The number of subquantizers.
|
100 |
+
ef_constructions
|
101 |
+
The number of candidates to evaluate during the construction of the index.
|
102 |
+
override
|
103 |
+
Whether to override the collection if it already exists.
|
104 |
+
|
105 |
+
"""
|
106 |
+
if os.path.exists(path=index_path) and not override:
|
107 |
+
return Index.load(index_path)
|
108 |
+
|
109 |
+
if os.path.exists(path=index_path):
|
110 |
+
os.remove(index_path)
|
111 |
+
|
112 |
+
# Create the Voyager index
|
113 |
+
index = Index(
|
114 |
+
Space.Cosine,
|
115 |
+
num_dimensions=embedding_size,
|
116 |
+
M=M,
|
117 |
+
ef_construction=ef_constructions,
|
118 |
+
)
|
119 |
+
|
120 |
+
index.save(index_path)
|
121 |
+
|
122 |
+
if override and os.path.exists(path=self.page_ids_to_data_path):
|
123 |
+
os.remove(path=self.page_ids_to_data_path)
|
124 |
+
|
125 |
+
# Create the SQLite databases
|
126 |
+
page_ids_to_data = self._load_page_ids_to_data()
|
127 |
+
page_ids_to_data.close()
|
128 |
+
return index
|
129 |
+
|
130 |
+
def add_documents(
|
131 |
+
self,
|
132 |
+
paths: str | list[str],
|
133 |
+
batch_size: int = 1,
|
134 |
+
) -> None:
|
135 |
+
"""Add documents to the index. Note that batch_size means the number of pages to encode at once, not documents."""
|
136 |
+
if isinstance(paths, str):
|
137 |
+
paths = [paths]
|
138 |
+
|
139 |
+
page_ids_to_data = self._load_page_ids_to_data()
|
140 |
+
|
141 |
+
images = []
|
142 |
+
num_pages = []
|
143 |
+
|
144 |
+
for path in paths:
|
145 |
+
if path.lower().endswith(".pdf"):
|
146 |
+
pdf = pdfium.PdfDocument(path)
|
147 |
+
n_pages = len(pdf)
|
148 |
+
num_pages.append(n_pages)
|
149 |
+
for page_number in range(n_pages):
|
150 |
+
page = pdf.get_page(page_number)
|
151 |
+
pil_image = page.render(
|
152 |
+
scale=1,
|
153 |
+
rotation=0,
|
154 |
+
)
|
155 |
+
pil_image = pil_image.to_pil()
|
156 |
+
images.append(pil_image)
|
157 |
+
pdf.close()
|
158 |
+
else:
|
159 |
+
pil_image = Image.open(path)
|
160 |
+
images.append(pil_image)
|
161 |
+
num_pages.append(1)
|
162 |
+
|
163 |
+
embeddings = []
|
164 |
+
for batch in iter_batch(
|
165 |
+
X=images, batch_size=batch_size, desc=f"Encoding pages (bs={batch_size})"
|
166 |
+
):
|
167 |
+
embeddings.extend(encode_images(batch))
|
168 |
+
|
169 |
+
embeddings_ids = self.index.add_items(embeddings)
|
170 |
+
current_index = 0
|
171 |
+
|
172 |
+
for i, path in enumerate(paths):
|
173 |
+
for page_number in range(num_pages[i]):
|
174 |
+
page_ids_to_data[embeddings_ids[current_index]] = {
|
175 |
+
"path": path,
|
176 |
+
"image": images[current_index],
|
177 |
+
"page_number": page_number,
|
178 |
+
}
|
179 |
+
current_index += 1
|
180 |
+
|
181 |
+
page_ids_to_data.commit()
|
182 |
+
self.index.save(self.index_path)
|
183 |
+
|
184 |
+
return self
|
185 |
+
|
186 |
+
def __call__(
|
187 |
+
self,
|
188 |
+
queries: np.ndarray | torch.Tensor,
|
189 |
+
k: int = 10,
|
190 |
+
) -> dict:
|
191 |
+
"""Query the index for the nearest neighbors of the queries embeddings.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
queries_embeddings
|
196 |
+
The queries embeddings.
|
197 |
+
k
|
198 |
+
The number of nearest neighbors to return.
|
199 |
+
|
200 |
+
"""
|
201 |
+
|
202 |
+
queries_embeddings = encode_queries(queries)
|
203 |
+
page_ids_to_data = self._load_page_ids_to_data()
|
204 |
+
k = min(k, len(page_ids_to_data))
|
205 |
+
|
206 |
+
n_queries = len(queries_embeddings)
|
207 |
+
indices, distances = self.index.query(
|
208 |
+
queries_embeddings, k, query_ef=self.ef_search
|
209 |
+
)
|
210 |
+
|
211 |
+
if len(indices) == 0:
|
212 |
+
raise ValueError("Index is empty, add documents before querying.")
|
213 |
+
documents = [
|
214 |
+
[page_ids_to_data[str(indice)] for indice in query_indices]
|
215 |
+
for query_indices in indices
|
216 |
+
]
|
217 |
+
page_ids_to_data.close()
|
218 |
+
return {
|
219 |
+
"documents": documents,
|
220 |
+
"distances": distances.reshape(n_queries, -1, k),
|
221 |
+
}
|