Spaces:
Runtime error
Runtime error
import gradio as gr | |
from qasrl_model_pipeline import QASRL_Pipeline | |
model = "kleinay/qanom-seq2seq-model-baseline" | |
pipeline = QASRL_Pipeline(model) | |
description = f"""This is a demo of the '{model}' model, which fine-tuned a Seq2Seq pretrained model on the QANom task.""" | |
title="QANom Parser Demo" | |
examples = [["The doctor was interested in Luke 's <p> treatment .", True, "treat"], | |
["The Veterinary student was interested in Luke 's <p> treatment of sea animals .", True, "treat"]] | |
input_sent_box_label = "Insert sentence here. Mark the predicate by adding the token '<p>' before it." | |
verb_form_inp_placeholder = "e.g. 'decide' for the nominalization 'decision', 'teach' for 'teacher', etc." | |
links = """<p style='text-align: center'> | |
<a href='https://www.qasrl.org' target='_blank'>QASRL Website</a> | <a href='https://huggingface.co/spaces/kleinay/qanom-seq2seq-demo' target='_blank'>Model Repo at Huggingface Hub</a> | |
</p>""" | |
def call(sentence, is_nominal, verb_form): | |
predicate_marker="<p>" | |
if predicate_marker not in sentence: | |
raise ValueError("You must highlight one word of the sentence as a predicate using preceding '<p>'.") | |
if not verb_form: | |
if is_nominal: | |
raise ValueError("You should provide the verbal form of the nominalization") | |
toks = sentence.split(" ") | |
pred_idx = toks.index(predicate_marker) | |
predicate = toks(pred_idx+1) | |
verb_form=predicate | |
pipe_out = pipeline(sentence, | |
predicate_marker=predicate_marker, | |
predicate_type="nominal" if is_nominal else "verbal", | |
verb_form=verb_form) | |
return pipe_out[0]["QAs"], pipe_out[0]["generated_text"] | |
iface = gr.Interface(fn=call, | |
inputs=[gr.inputs.Textbox(placeholder=input_sent_box_label, label="Sentence", lines=4), | |
gr.inputs.Checkbox(default=True, label="Is Nominalization?"), | |
gr.inputs.Textbox(placeholder=verb_form_inp_placeholder, label="Verbal form (for nominalizations)", default='')], | |
outputs=[gr.outputs.JSON(label="Model Output - QASRL"), gr.outputs.Textbox(label="Raw output sequence")], | |
title=title, | |
description=description, | |
article=links, | |
examples=examples ) | |
iface.launch() |