Spaces:
Runtime error
Runtime error
File size: 2,966 Bytes
4844514 374cbe8 6c9521b d6b5b47 4844514 b1f0d38 f7a1d81 6021c85 b1f0d38 506a464 b1f0d38 506a464 6c9521b b1f0d38 506a464 b1f0d38 506a464 6c9521b b1f0d38 506a464 408005e 506a464 6c9521b 506a464 b1f0d38 506a464 b1f0d38 3dc25ec b1f0d38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from qasrl_model_pipeline import QASRL_Pipeline
models = ["kleinay/qanom-seq2seq-model-baseline",
"kleinay/qanom-seq2seq-model-joint"]
pipelines = {model: QASRL_Pipeline(model) for model in models}
description = f"""This is a demo of QASRL/QANom models, which fine-tuned a Seq2Seq pretrained model (T5) on the QASRL/QANom tasks."""
title="QANom Parser Demo"
examples = [[models[0], "The doctor was interested in Luke 's <p> treatment .", True, "treat"],
[models[1], "The doctor was interested to know about Luke 's bio-feedback <p> treatment given by the nurse yesterday.", True, "treat"],
[models[0], "The Veterinary student was interested in Luke 's <p> treatment of sea animals .", True, "treat"],
[models[1], "The Veterinary student was <p> interested in Luke 's treatment of sea animals .", False, "interest"]]
input_sent_box_label = "Insert sentence here. Mark the predicate by adding the token '<p>' before it."
verb_form_inp_placeholder = "e.g. 'decide' for the nominalization 'decision', 'teach' for 'teacher', etc."
links = """<p style='text-align: center'>
<a href='https://www.qasrl.org' target='_blank'>QASRL Website</a> | <a href='https://huggingface.co/kleinay/qanom-seq2seq-model-baseline' target='_blank'>Model Repo at Huggingface Hub</a>
</p>"""
def call(model_name, sentence, is_nominal, verb_form):
predicate_marker="<p>"
if predicate_marker not in sentence:
raise ValueError("You must highlight one word of the sentence as a predicate using preceding '<p>'.")
if not verb_form:
if is_nominal:
raise ValueError("You should provide the verbal form of the nominalization")
toks = sentence.split(" ")
pred_idx = toks.index(predicate_marker)
predicate = toks(pred_idx+1)
verb_form=predicate
pipeline = pipelines[model_name]
pipe_out = pipeline(sentence,
predicate_marker=predicate_marker,
predicate_type="nominal" if is_nominal else "verbal",
verb_form=verb_form)
return pipe_out["QAs"], pipe_out["generated_text"]
iface = gr.Interface(fn=call,
inputs=[gr.inputs.Radio(choices=models, default=models[0], label="Model"),
gr.inputs.Textbox(placeholder=input_sent_box_label, label="Sentence", lines=4),
gr.inputs.Checkbox(default=True, label="Is Nominalization?"),
gr.inputs.Textbox(placeholder=verb_form_inp_placeholder, label="Verbal form (for nominalizations)", default='')],
outputs=[gr.outputs.JSON(label="Model Output - QASRL"), gr.outputs.Textbox(label="Raw output sequence")],
title=title,
description=description,
article=links,
examples=examples )
iface.launch() |