Spaces:
Runtime error
Runtime error
import gradio as gr | |
import nltk | |
nltk.download('omw-1.4') | |
from qanom.nominalization_detector import NominalizationDetector | |
detector = NominalizationDetector() | |
title = "Nominalization Detection Demo" | |
description = f"""This is a demo of QANom's nominalization detection algorithm, | |
comprised of candidate nominalization extraction followed by a contextualized binary classification model.""" | |
links = """<p style='text-align: center'> | |
<a href='https://github.com/kleinay/QANom' target='_blank'>QANom repo</a> | | |
<a href='https://huggingface.co/kleinay/nominalization-candidate-classifier' target='_blank'>Model Repo at Huggingface Hub</a> | | |
<a href='https://www.aclweb.org/anthology/2020.coling-main.274/' target='_blank'>QANom Paper</a> | |
</p>""" | |
examples = [["The doctor was interested in Luke 's treatment .", True, 0.5], | |
["the construction of the officer 's building finished right after the beginning of the destruction of the previous construction .", True, 0.7]] | |
def call(sentence: str, return_all_candidates: bool, threshold: float): | |
ret = detector([sentence], return_all_candidates, True, threshold)[0] | |
if return_all_candidates: | |
positives = [d["predicate_idx"] for d in ret if d['predicate_detector_prediction']] | |
negatives = [d["predicate_idx"] for d in ret if not d['predicate_detector_prediction']] | |
else: | |
positives = [d["predicate_idx"] for d in ret] | |
negatives = [] | |
def color(idx): | |
if idx in positives: return "lightgreen" | |
if idx in negatives: return "pink" | |
idx2verb = {d["predicate_idx"] : d["verb_form"] for d in ret} | |
idx2prob = {d["predicate_idx"] : d["predicate_detector_probability"] for d in ret} | |
def word_span(word, idx): | |
tooltip = f'title=" probability={idx2prob[idx]:.2}
verb={idx2verb[idx]}"' if idx in idx2verb else '' | |
return f'<span {tooltip} style="background-color: {color(idx)}">{word}</span>' | |
html = '<span>' + ' '.join(word_span(word, idx) for idx, word in enumerate(sentence.split(" "))) + '</span>' | |
return html, ret | |
iface = gr.Interface(call, | |
inputs=[gr.inputs.Textbox(label="Sentence", lines=3), | |
gr.inputs.Checkbox(default=True, label="Return all candidates?"), | |
gr.inputs.Slider(minimum=0., maximum=1., step=0.01, default=0.5, label="Threshold")], | |
outputs=[gr.outputs.HTML(label="Detected Nominalizations"), | |
gr.outputs.JSON(label="Raw Model Output")], | |
title=title, | |
description=description, | |
article=links, | |
examples=examples ) | |
iface.launch() |